| Step |
Hyp |
Ref |
Expression |
| 1 |
|
0z |
|- 0 e. ZZ |
| 2 |
|
rmxyval |
|- ( ( A e. ( ZZ>= ` 2 ) /\ 0 e. ZZ ) -> ( ( A rmX 0 ) + ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( A rmY 0 ) ) ) = ( ( A + ( sqrt ` ( ( A ^ 2 ) - 1 ) ) ) ^ 0 ) ) |
| 3 |
1 2
|
mpan2 |
|- ( A e. ( ZZ>= ` 2 ) -> ( ( A rmX 0 ) + ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( A rmY 0 ) ) ) = ( ( A + ( sqrt ` ( ( A ^ 2 ) - 1 ) ) ) ^ 0 ) ) |
| 4 |
|
rmbaserp |
|- ( A e. ( ZZ>= ` 2 ) -> ( A + ( sqrt ` ( ( A ^ 2 ) - 1 ) ) ) e. RR+ ) |
| 5 |
4
|
rpcnd |
|- ( A e. ( ZZ>= ` 2 ) -> ( A + ( sqrt ` ( ( A ^ 2 ) - 1 ) ) ) e. CC ) |
| 6 |
5
|
exp0d |
|- ( A e. ( ZZ>= ` 2 ) -> ( ( A + ( sqrt ` ( ( A ^ 2 ) - 1 ) ) ) ^ 0 ) = 1 ) |
| 7 |
|
rmspecpos |
|- ( A e. ( ZZ>= ` 2 ) -> ( ( A ^ 2 ) - 1 ) e. RR+ ) |
| 8 |
7
|
rpcnd |
|- ( A e. ( ZZ>= ` 2 ) -> ( ( A ^ 2 ) - 1 ) e. CC ) |
| 9 |
8
|
sqrtcld |
|- ( A e. ( ZZ>= ` 2 ) -> ( sqrt ` ( ( A ^ 2 ) - 1 ) ) e. CC ) |
| 10 |
9
|
mul01d |
|- ( A e. ( ZZ>= ` 2 ) -> ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. 0 ) = 0 ) |
| 11 |
10
|
oveq2d |
|- ( A e. ( ZZ>= ` 2 ) -> ( 1 + ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. 0 ) ) = ( 1 + 0 ) ) |
| 12 |
|
1p0e1 |
|- ( 1 + 0 ) = 1 |
| 13 |
11 12
|
eqtr2di |
|- ( A e. ( ZZ>= ` 2 ) -> 1 = ( 1 + ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. 0 ) ) ) |
| 14 |
3 6 13
|
3eqtrd |
|- ( A e. ( ZZ>= ` 2 ) -> ( ( A rmX 0 ) + ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( A rmY 0 ) ) ) = ( 1 + ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. 0 ) ) ) |
| 15 |
|
rmspecsqrtnq |
|- ( A e. ( ZZ>= ` 2 ) -> ( sqrt ` ( ( A ^ 2 ) - 1 ) ) e. ( CC \ QQ ) ) |
| 16 |
|
nn0ssq |
|- NN0 C_ QQ |
| 17 |
|
frmx |
|- rmX : ( ( ZZ>= ` 2 ) X. ZZ ) --> NN0 |
| 18 |
17
|
fovcl |
|- ( ( A e. ( ZZ>= ` 2 ) /\ 0 e. ZZ ) -> ( A rmX 0 ) e. NN0 ) |
| 19 |
1 18
|
mpan2 |
|- ( A e. ( ZZ>= ` 2 ) -> ( A rmX 0 ) e. NN0 ) |
| 20 |
16 19
|
sselid |
|- ( A e. ( ZZ>= ` 2 ) -> ( A rmX 0 ) e. QQ ) |
| 21 |
|
zssq |
|- ZZ C_ QQ |
| 22 |
|
frmy |
|- rmY : ( ( ZZ>= ` 2 ) X. ZZ ) --> ZZ |
| 23 |
22
|
fovcl |
|- ( ( A e. ( ZZ>= ` 2 ) /\ 0 e. ZZ ) -> ( A rmY 0 ) e. ZZ ) |
| 24 |
1 23
|
mpan2 |
|- ( A e. ( ZZ>= ` 2 ) -> ( A rmY 0 ) e. ZZ ) |
| 25 |
21 24
|
sselid |
|- ( A e. ( ZZ>= ` 2 ) -> ( A rmY 0 ) e. QQ ) |
| 26 |
|
1z |
|- 1 e. ZZ |
| 27 |
21 26
|
sselii |
|- 1 e. QQ |
| 28 |
27
|
a1i |
|- ( A e. ( ZZ>= ` 2 ) -> 1 e. QQ ) |
| 29 |
21 1
|
sselii |
|- 0 e. QQ |
| 30 |
29
|
a1i |
|- ( A e. ( ZZ>= ` 2 ) -> 0 e. QQ ) |
| 31 |
|
qirropth |
|- ( ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) e. ( CC \ QQ ) /\ ( ( A rmX 0 ) e. QQ /\ ( A rmY 0 ) e. QQ ) /\ ( 1 e. QQ /\ 0 e. QQ ) ) -> ( ( ( A rmX 0 ) + ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( A rmY 0 ) ) ) = ( 1 + ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. 0 ) ) <-> ( ( A rmX 0 ) = 1 /\ ( A rmY 0 ) = 0 ) ) ) |
| 32 |
15 20 25 28 30 31
|
syl122anc |
|- ( A e. ( ZZ>= ` 2 ) -> ( ( ( A rmX 0 ) + ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( A rmY 0 ) ) ) = ( 1 + ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. 0 ) ) <-> ( ( A rmX 0 ) = 1 /\ ( A rmY 0 ) = 0 ) ) ) |
| 33 |
14 32
|
mpbid |
|- ( A e. ( ZZ>= ` 2 ) -> ( ( A rmX 0 ) = 1 /\ ( A rmY 0 ) = 0 ) ) |