Metamath Proof Explorer


Theorem rmxy0

Description: Value of the X and Y sequences at 0. (Contributed by Stefan O'Rear, 22-Sep-2014)

Ref Expression
Assertion rmxy0 ( 𝐴 ∈ ( ℤ ‘ 2 ) → ( ( 𝐴 Xrm 0 ) = 1 ∧ ( 𝐴 Yrm 0 ) = 0 ) )

Proof

Step Hyp Ref Expression
1 0z 0 ∈ ℤ
2 rmxyval ( ( 𝐴 ∈ ( ℤ ‘ 2 ) ∧ 0 ∈ ℤ ) → ( ( 𝐴 Xrm 0 ) + ( ( √ ‘ ( ( 𝐴 ↑ 2 ) − 1 ) ) · ( 𝐴 Yrm 0 ) ) ) = ( ( 𝐴 + ( √ ‘ ( ( 𝐴 ↑ 2 ) − 1 ) ) ) ↑ 0 ) )
3 1 2 mpan2 ( 𝐴 ∈ ( ℤ ‘ 2 ) → ( ( 𝐴 Xrm 0 ) + ( ( √ ‘ ( ( 𝐴 ↑ 2 ) − 1 ) ) · ( 𝐴 Yrm 0 ) ) ) = ( ( 𝐴 + ( √ ‘ ( ( 𝐴 ↑ 2 ) − 1 ) ) ) ↑ 0 ) )
4 rmbaserp ( 𝐴 ∈ ( ℤ ‘ 2 ) → ( 𝐴 + ( √ ‘ ( ( 𝐴 ↑ 2 ) − 1 ) ) ) ∈ ℝ+ )
5 4 rpcnd ( 𝐴 ∈ ( ℤ ‘ 2 ) → ( 𝐴 + ( √ ‘ ( ( 𝐴 ↑ 2 ) − 1 ) ) ) ∈ ℂ )
6 5 exp0d ( 𝐴 ∈ ( ℤ ‘ 2 ) → ( ( 𝐴 + ( √ ‘ ( ( 𝐴 ↑ 2 ) − 1 ) ) ) ↑ 0 ) = 1 )
7 rmspecpos ( 𝐴 ∈ ( ℤ ‘ 2 ) → ( ( 𝐴 ↑ 2 ) − 1 ) ∈ ℝ+ )
8 7 rpcnd ( 𝐴 ∈ ( ℤ ‘ 2 ) → ( ( 𝐴 ↑ 2 ) − 1 ) ∈ ℂ )
9 8 sqrtcld ( 𝐴 ∈ ( ℤ ‘ 2 ) → ( √ ‘ ( ( 𝐴 ↑ 2 ) − 1 ) ) ∈ ℂ )
10 9 mul01d ( 𝐴 ∈ ( ℤ ‘ 2 ) → ( ( √ ‘ ( ( 𝐴 ↑ 2 ) − 1 ) ) · 0 ) = 0 )
11 10 oveq2d ( 𝐴 ∈ ( ℤ ‘ 2 ) → ( 1 + ( ( √ ‘ ( ( 𝐴 ↑ 2 ) − 1 ) ) · 0 ) ) = ( 1 + 0 ) )
12 1p0e1 ( 1 + 0 ) = 1
13 11 12 eqtr2di ( 𝐴 ∈ ( ℤ ‘ 2 ) → 1 = ( 1 + ( ( √ ‘ ( ( 𝐴 ↑ 2 ) − 1 ) ) · 0 ) ) )
14 3 6 13 3eqtrd ( 𝐴 ∈ ( ℤ ‘ 2 ) → ( ( 𝐴 Xrm 0 ) + ( ( √ ‘ ( ( 𝐴 ↑ 2 ) − 1 ) ) · ( 𝐴 Yrm 0 ) ) ) = ( 1 + ( ( √ ‘ ( ( 𝐴 ↑ 2 ) − 1 ) ) · 0 ) ) )
15 rmspecsqrtnq ( 𝐴 ∈ ( ℤ ‘ 2 ) → ( √ ‘ ( ( 𝐴 ↑ 2 ) − 1 ) ) ∈ ( ℂ ∖ ℚ ) )
16 nn0ssq 0 ⊆ ℚ
17 frmx Xrm : ( ( ℤ ‘ 2 ) × ℤ ) ⟶ ℕ0
18 17 fovcl ( ( 𝐴 ∈ ( ℤ ‘ 2 ) ∧ 0 ∈ ℤ ) → ( 𝐴 Xrm 0 ) ∈ ℕ0 )
19 1 18 mpan2 ( 𝐴 ∈ ( ℤ ‘ 2 ) → ( 𝐴 Xrm 0 ) ∈ ℕ0 )
20 16 19 sseldi ( 𝐴 ∈ ( ℤ ‘ 2 ) → ( 𝐴 Xrm 0 ) ∈ ℚ )
21 zssq ℤ ⊆ ℚ
22 frmy Yrm : ( ( ℤ ‘ 2 ) × ℤ ) ⟶ ℤ
23 22 fovcl ( ( 𝐴 ∈ ( ℤ ‘ 2 ) ∧ 0 ∈ ℤ ) → ( 𝐴 Yrm 0 ) ∈ ℤ )
24 1 23 mpan2 ( 𝐴 ∈ ( ℤ ‘ 2 ) → ( 𝐴 Yrm 0 ) ∈ ℤ )
25 21 24 sseldi ( 𝐴 ∈ ( ℤ ‘ 2 ) → ( 𝐴 Yrm 0 ) ∈ ℚ )
26 1z 1 ∈ ℤ
27 21 26 sselii 1 ∈ ℚ
28 27 a1i ( 𝐴 ∈ ( ℤ ‘ 2 ) → 1 ∈ ℚ )
29 21 1 sselii 0 ∈ ℚ
30 29 a1i ( 𝐴 ∈ ( ℤ ‘ 2 ) → 0 ∈ ℚ )
31 qirropth ( ( ( √ ‘ ( ( 𝐴 ↑ 2 ) − 1 ) ) ∈ ( ℂ ∖ ℚ ) ∧ ( ( 𝐴 Xrm 0 ) ∈ ℚ ∧ ( 𝐴 Yrm 0 ) ∈ ℚ ) ∧ ( 1 ∈ ℚ ∧ 0 ∈ ℚ ) ) → ( ( ( 𝐴 Xrm 0 ) + ( ( √ ‘ ( ( 𝐴 ↑ 2 ) − 1 ) ) · ( 𝐴 Yrm 0 ) ) ) = ( 1 + ( ( √ ‘ ( ( 𝐴 ↑ 2 ) − 1 ) ) · 0 ) ) ↔ ( ( 𝐴 Xrm 0 ) = 1 ∧ ( 𝐴 Yrm 0 ) = 0 ) ) )
32 15 20 25 28 30 31 syl122anc ( 𝐴 ∈ ( ℤ ‘ 2 ) → ( ( ( 𝐴 Xrm 0 ) + ( ( √ ‘ ( ( 𝐴 ↑ 2 ) − 1 ) ) · ( 𝐴 Yrm 0 ) ) ) = ( 1 + ( ( √ ‘ ( ( 𝐴 ↑ 2 ) − 1 ) ) · 0 ) ) ↔ ( ( 𝐴 Xrm 0 ) = 1 ∧ ( 𝐴 Yrm 0 ) = 0 ) ) )
33 14 32 mpbid ( 𝐴 ∈ ( ℤ ‘ 2 ) → ( ( 𝐴 Xrm 0 ) = 1 ∧ ( 𝐴 Yrm 0 ) = 0 ) )