| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eluzelcn |
⊢ ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) → 𝐴 ∈ ℂ ) |
| 2 |
1
|
sqcld |
⊢ ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) → ( 𝐴 ↑ 2 ) ∈ ℂ ) |
| 3 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
| 4 |
|
subcl |
⊢ ( ( ( 𝐴 ↑ 2 ) ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( 𝐴 ↑ 2 ) − 1 ) ∈ ℂ ) |
| 5 |
2 3 4
|
sylancl |
⊢ ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) → ( ( 𝐴 ↑ 2 ) − 1 ) ∈ ℂ ) |
| 6 |
5
|
sqrtcld |
⊢ ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) → ( √ ‘ ( ( 𝐴 ↑ 2 ) − 1 ) ) ∈ ℂ ) |
| 7 |
|
eluz2nn |
⊢ ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) → 𝐴 ∈ ℕ ) |
| 8 |
7
|
nnsqcld |
⊢ ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) → ( 𝐴 ↑ 2 ) ∈ ℕ ) |
| 9 |
|
nnm1nn0 |
⊢ ( ( 𝐴 ↑ 2 ) ∈ ℕ → ( ( 𝐴 ↑ 2 ) − 1 ) ∈ ℕ0 ) |
| 10 |
8 9
|
syl |
⊢ ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) → ( ( 𝐴 ↑ 2 ) − 1 ) ∈ ℕ0 ) |
| 11 |
|
nnm1nn0 |
⊢ ( 𝐴 ∈ ℕ → ( 𝐴 − 1 ) ∈ ℕ0 ) |
| 12 |
7 11
|
syl |
⊢ ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) → ( 𝐴 − 1 ) ∈ ℕ0 ) |
| 13 |
|
binom2sub1 |
⊢ ( 𝐴 ∈ ℂ → ( ( 𝐴 − 1 ) ↑ 2 ) = ( ( ( 𝐴 ↑ 2 ) − ( 2 · 𝐴 ) ) + 1 ) ) |
| 14 |
1 13
|
syl |
⊢ ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) → ( ( 𝐴 − 1 ) ↑ 2 ) = ( ( ( 𝐴 ↑ 2 ) − ( 2 · 𝐴 ) ) + 1 ) ) |
| 15 |
|
2cnd |
⊢ ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) → 2 ∈ ℂ ) |
| 16 |
15 1
|
mulcld |
⊢ ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) → ( 2 · 𝐴 ) ∈ ℂ ) |
| 17 |
3
|
a1i |
⊢ ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) → 1 ∈ ℂ ) |
| 18 |
2 16 17
|
subsubd |
⊢ ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) → ( ( 𝐴 ↑ 2 ) − ( ( 2 · 𝐴 ) − 1 ) ) = ( ( ( 𝐴 ↑ 2 ) − ( 2 · 𝐴 ) ) + 1 ) ) |
| 19 |
14 18
|
eqtr4d |
⊢ ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) → ( ( 𝐴 − 1 ) ↑ 2 ) = ( ( 𝐴 ↑ 2 ) − ( ( 2 · 𝐴 ) − 1 ) ) ) |
| 20 |
|
1red |
⊢ ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) → 1 ∈ ℝ ) |
| 21 |
|
2re |
⊢ 2 ∈ ℝ |
| 22 |
21
|
a1i |
⊢ ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) → 2 ∈ ℝ ) |
| 23 |
|
eluzelre |
⊢ ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) → 𝐴 ∈ ℝ ) |
| 24 |
22 23
|
remulcld |
⊢ ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) → ( 2 · 𝐴 ) ∈ ℝ ) |
| 25 |
24 20
|
resubcld |
⊢ ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) → ( ( 2 · 𝐴 ) − 1 ) ∈ ℝ ) |
| 26 |
8
|
nnred |
⊢ ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) → ( 𝐴 ↑ 2 ) ∈ ℝ ) |
| 27 |
|
eluz2gt1 |
⊢ ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) → 1 < 𝐴 ) |
| 28 |
20 20 23 27 27
|
lt2addmuld |
⊢ ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) → ( 1 + 1 ) < ( 2 · 𝐴 ) ) |
| 29 |
|
remulcl |
⊢ ( ( 2 ∈ ℝ ∧ 𝐴 ∈ ℝ ) → ( 2 · 𝐴 ) ∈ ℝ ) |
| 30 |
21 23 29
|
sylancr |
⊢ ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) → ( 2 · 𝐴 ) ∈ ℝ ) |
| 31 |
20 20 30
|
ltaddsubd |
⊢ ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) → ( ( 1 + 1 ) < ( 2 · 𝐴 ) ↔ 1 < ( ( 2 · 𝐴 ) − 1 ) ) ) |
| 32 |
28 31
|
mpbid |
⊢ ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) → 1 < ( ( 2 · 𝐴 ) − 1 ) ) |
| 33 |
20 25 26 32
|
ltsub2dd |
⊢ ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) → ( ( 𝐴 ↑ 2 ) − ( ( 2 · 𝐴 ) − 1 ) ) < ( ( 𝐴 ↑ 2 ) − 1 ) ) |
| 34 |
19 33
|
eqbrtrd |
⊢ ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) → ( ( 𝐴 − 1 ) ↑ 2 ) < ( ( 𝐴 ↑ 2 ) − 1 ) ) |
| 35 |
26
|
ltm1d |
⊢ ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) → ( ( 𝐴 ↑ 2 ) − 1 ) < ( 𝐴 ↑ 2 ) ) |
| 36 |
|
npcan |
⊢ ( ( 𝐴 ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( 𝐴 − 1 ) + 1 ) = 𝐴 ) |
| 37 |
1 3 36
|
sylancl |
⊢ ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) → ( ( 𝐴 − 1 ) + 1 ) = 𝐴 ) |
| 38 |
37
|
oveq1d |
⊢ ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) → ( ( ( 𝐴 − 1 ) + 1 ) ↑ 2 ) = ( 𝐴 ↑ 2 ) ) |
| 39 |
35 38
|
breqtrrd |
⊢ ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) → ( ( 𝐴 ↑ 2 ) − 1 ) < ( ( ( 𝐴 − 1 ) + 1 ) ↑ 2 ) ) |
| 40 |
|
nonsq |
⊢ ( ( ( ( ( 𝐴 ↑ 2 ) − 1 ) ∈ ℕ0 ∧ ( 𝐴 − 1 ) ∈ ℕ0 ) ∧ ( ( ( 𝐴 − 1 ) ↑ 2 ) < ( ( 𝐴 ↑ 2 ) − 1 ) ∧ ( ( 𝐴 ↑ 2 ) − 1 ) < ( ( ( 𝐴 − 1 ) + 1 ) ↑ 2 ) ) ) → ¬ ( √ ‘ ( ( 𝐴 ↑ 2 ) − 1 ) ) ∈ ℚ ) |
| 41 |
10 12 34 39 40
|
syl22anc |
⊢ ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) → ¬ ( √ ‘ ( ( 𝐴 ↑ 2 ) − 1 ) ) ∈ ℚ ) |
| 42 |
6 41
|
eldifd |
⊢ ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) → ( √ ‘ ( ( 𝐴 ↑ 2 ) − 1 ) ) ∈ ( ℂ ∖ ℚ ) ) |