Metamath Proof Explorer


Theorem rmspecsqrtnq

Description: The discriminant used to define the X and Y sequences has an irrational square root. (Contributed by Stefan O'Rear, 21-Sep-2014) (Proof shortened by AV, 2-Aug-2021)

Ref Expression
Assertion rmspecsqrtnq A2A21

Proof

Step Hyp Ref Expression
1 eluzelcn A2A
2 1 sqcld A2A2
3 ax-1cn 1
4 subcl A21A21
5 2 3 4 sylancl A2A21
6 5 sqrtcld A2A21
7 eluz2nn A2A
8 7 nnsqcld A2A2
9 nnm1nn0 A2A210
10 8 9 syl A2A210
11 nnm1nn0 AA10
12 7 11 syl A2A10
13 binom2sub1 AA12=A2-2A+1
14 1 13 syl A2A12=A2-2A+1
15 2cnd A22
16 15 1 mulcld A22A
17 3 a1i A21
18 2 16 17 subsubd A2A22A1=A2-2A+1
19 14 18 eqtr4d A2A12=A22A1
20 1red A21
21 2re 2
22 21 a1i A22
23 eluzelre A2A
24 22 23 remulcld A22A
25 24 20 resubcld A22A1
26 8 nnred A2A2
27 eluz2gt1 A21<A
28 20 20 23 27 27 lt2addmuld A21+1<2A
29 remulcl 2A2A
30 21 23 29 sylancr A22A
31 20 20 30 ltaddsubd A21+1<2A1<2A1
32 28 31 mpbid A21<2A1
33 20 25 26 32 ltsub2dd A2A22A1<A21
34 19 33 eqbrtrd A2A12<A21
35 26 ltm1d A2A21<A2
36 npcan A1A-1+1=A
37 1 3 36 sylancl A2A-1+1=A
38 37 oveq1d A2A-1+12=A2
39 35 38 breqtrrd A2A21<A-1+12
40 nonsq A210A10A12<A21A21<A-1+12¬A21
41 10 12 34 39 40 syl22anc A2¬A21
42 6 41 eldifd A2A21