Description: The discriminant used to define the X and Y sequences has an irrational square root. (Contributed by Stefan O'Rear, 21-Sep-2014) (Proof shortened by AV, 2-Aug-2021)
Ref | Expression | ||
---|---|---|---|
Assertion | rmspecsqrtnq | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eluzelcn | |
|
2 | 1 | sqcld | |
3 | ax-1cn | |
|
4 | subcl | |
|
5 | 2 3 4 | sylancl | |
6 | 5 | sqrtcld | |
7 | eluz2nn | |
|
8 | 7 | nnsqcld | |
9 | nnm1nn0 | |
|
10 | 8 9 | syl | |
11 | nnm1nn0 | |
|
12 | 7 11 | syl | |
13 | binom2sub1 | |
|
14 | 1 13 | syl | |
15 | 2cnd | |
|
16 | 15 1 | mulcld | |
17 | 3 | a1i | |
18 | 2 16 17 | subsubd | |
19 | 14 18 | eqtr4d | |
20 | 1red | |
|
21 | 2re | |
|
22 | 21 | a1i | |
23 | eluzelre | |
|
24 | 22 23 | remulcld | |
25 | 24 20 | resubcld | |
26 | 8 | nnred | |
27 | eluz2gt1 | |
|
28 | 20 20 23 27 27 | lt2addmuld | |
29 | remulcl | |
|
30 | 21 23 29 | sylancr | |
31 | 20 20 30 | ltaddsubd | |
32 | 28 31 | mpbid | |
33 | 20 25 26 32 | ltsub2dd | |
34 | 19 33 | eqbrtrd | |
35 | 26 | ltm1d | |
36 | npcan | |
|
37 | 1 3 36 | sylancl | |
38 | 37 | oveq1d | |
39 | 35 38 | breqtrrd | |
40 | nonsq | |
|
41 | 10 12 34 39 40 | syl22anc | |
42 | 6 41 | eldifd | |