| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 1z |  |-  1 e. ZZ | 
						
							| 2 |  | rmxyval |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ 1 e. ZZ ) -> ( ( A rmX 1 ) + ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( A rmY 1 ) ) ) = ( ( A + ( sqrt ` ( ( A ^ 2 ) - 1 ) ) ) ^ 1 ) ) | 
						
							| 3 | 1 2 | mpan2 |  |-  ( A e. ( ZZ>= ` 2 ) -> ( ( A rmX 1 ) + ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( A rmY 1 ) ) ) = ( ( A + ( sqrt ` ( ( A ^ 2 ) - 1 ) ) ) ^ 1 ) ) | 
						
							| 4 |  | rmbaserp |  |-  ( A e. ( ZZ>= ` 2 ) -> ( A + ( sqrt ` ( ( A ^ 2 ) - 1 ) ) ) e. RR+ ) | 
						
							| 5 | 4 | rpcnd |  |-  ( A e. ( ZZ>= ` 2 ) -> ( A + ( sqrt ` ( ( A ^ 2 ) - 1 ) ) ) e. CC ) | 
						
							| 6 | 5 | exp1d |  |-  ( A e. ( ZZ>= ` 2 ) -> ( ( A + ( sqrt ` ( ( A ^ 2 ) - 1 ) ) ) ^ 1 ) = ( A + ( sqrt ` ( ( A ^ 2 ) - 1 ) ) ) ) | 
						
							| 7 |  | rmspecpos |  |-  ( A e. ( ZZ>= ` 2 ) -> ( ( A ^ 2 ) - 1 ) e. RR+ ) | 
						
							| 8 | 7 | rpcnd |  |-  ( A e. ( ZZ>= ` 2 ) -> ( ( A ^ 2 ) - 1 ) e. CC ) | 
						
							| 9 | 8 | sqrtcld |  |-  ( A e. ( ZZ>= ` 2 ) -> ( sqrt ` ( ( A ^ 2 ) - 1 ) ) e. CC ) | 
						
							| 10 | 9 | mulridd |  |-  ( A e. ( ZZ>= ` 2 ) -> ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. 1 ) = ( sqrt ` ( ( A ^ 2 ) - 1 ) ) ) | 
						
							| 11 | 10 | eqcomd |  |-  ( A e. ( ZZ>= ` 2 ) -> ( sqrt ` ( ( A ^ 2 ) - 1 ) ) = ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. 1 ) ) | 
						
							| 12 | 11 | oveq2d |  |-  ( A e. ( ZZ>= ` 2 ) -> ( A + ( sqrt ` ( ( A ^ 2 ) - 1 ) ) ) = ( A + ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. 1 ) ) ) | 
						
							| 13 | 3 6 12 | 3eqtrd |  |-  ( A e. ( ZZ>= ` 2 ) -> ( ( A rmX 1 ) + ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( A rmY 1 ) ) ) = ( A + ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. 1 ) ) ) | 
						
							| 14 |  | rmspecsqrtnq |  |-  ( A e. ( ZZ>= ` 2 ) -> ( sqrt ` ( ( A ^ 2 ) - 1 ) ) e. ( CC \ QQ ) ) | 
						
							| 15 |  | nn0ssq |  |-  NN0 C_ QQ | 
						
							| 16 |  | frmx |  |-  rmX : ( ( ZZ>= ` 2 ) X. ZZ ) --> NN0 | 
						
							| 17 | 16 | fovcl |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ 1 e. ZZ ) -> ( A rmX 1 ) e. NN0 ) | 
						
							| 18 | 1 17 | mpan2 |  |-  ( A e. ( ZZ>= ` 2 ) -> ( A rmX 1 ) e. NN0 ) | 
						
							| 19 | 15 18 | sselid |  |-  ( A e. ( ZZ>= ` 2 ) -> ( A rmX 1 ) e. QQ ) | 
						
							| 20 |  | zssq |  |-  ZZ C_ QQ | 
						
							| 21 |  | frmy |  |-  rmY : ( ( ZZ>= ` 2 ) X. ZZ ) --> ZZ | 
						
							| 22 | 21 | fovcl |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ 1 e. ZZ ) -> ( A rmY 1 ) e. ZZ ) | 
						
							| 23 | 1 22 | mpan2 |  |-  ( A e. ( ZZ>= ` 2 ) -> ( A rmY 1 ) e. ZZ ) | 
						
							| 24 | 20 23 | sselid |  |-  ( A e. ( ZZ>= ` 2 ) -> ( A rmY 1 ) e. QQ ) | 
						
							| 25 |  | eluzelz |  |-  ( A e. ( ZZ>= ` 2 ) -> A e. ZZ ) | 
						
							| 26 |  | zq |  |-  ( A e. ZZ -> A e. QQ ) | 
						
							| 27 | 25 26 | syl |  |-  ( A e. ( ZZ>= ` 2 ) -> A e. QQ ) | 
						
							| 28 | 20 1 | sselii |  |-  1 e. QQ | 
						
							| 29 | 28 | a1i |  |-  ( A e. ( ZZ>= ` 2 ) -> 1 e. QQ ) | 
						
							| 30 |  | qirropth |  |-  ( ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) e. ( CC \ QQ ) /\ ( ( A rmX 1 ) e. QQ /\ ( A rmY 1 ) e. QQ ) /\ ( A e. QQ /\ 1 e. QQ ) ) -> ( ( ( A rmX 1 ) + ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( A rmY 1 ) ) ) = ( A + ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. 1 ) ) <-> ( ( A rmX 1 ) = A /\ ( A rmY 1 ) = 1 ) ) ) | 
						
							| 31 | 14 19 24 27 29 30 | syl122anc |  |-  ( A e. ( ZZ>= ` 2 ) -> ( ( ( A rmX 1 ) + ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( A rmY 1 ) ) ) = ( A + ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. 1 ) ) <-> ( ( A rmX 1 ) = A /\ ( A rmY 1 ) = 1 ) ) ) | 
						
							| 32 | 13 31 | mpbid |  |-  ( A e. ( ZZ>= ` 2 ) -> ( ( A rmX 1 ) = A /\ ( A rmY 1 ) = 1 ) ) |