Metamath Proof Explorer


Theorem rmxy1

Description: Value of the X and Y sequences at 1. (Contributed by Stefan O'Rear, 22-Sep-2014)

Ref Expression
Assertion rmxy1 A 2 A X rm 1 = A A Y rm 1 = 1

Proof

Step Hyp Ref Expression
1 1z 1
2 rmxyval A 2 1 A X rm 1 + A 2 1 A Y rm 1 = A + A 2 1 1
3 1 2 mpan2 A 2 A X rm 1 + A 2 1 A Y rm 1 = A + A 2 1 1
4 rmbaserp A 2 A + A 2 1 +
5 4 rpcnd A 2 A + A 2 1
6 5 exp1d A 2 A + A 2 1 1 = A + A 2 1
7 rmspecpos A 2 A 2 1 +
8 7 rpcnd A 2 A 2 1
9 8 sqrtcld A 2 A 2 1
10 9 mulid1d A 2 A 2 1 1 = A 2 1
11 10 eqcomd A 2 A 2 1 = A 2 1 1
12 11 oveq2d A 2 A + A 2 1 = A + A 2 1 1
13 3 6 12 3eqtrd A 2 A X rm 1 + A 2 1 A Y rm 1 = A + A 2 1 1
14 rmspecsqrtnq A 2 A 2 1
15 nn0ssq 0
16 frmx X rm : 2 × 0
17 16 fovcl A 2 1 A X rm 1 0
18 1 17 mpan2 A 2 A X rm 1 0
19 15 18 sselid A 2 A X rm 1
20 zssq
21 frmy Y rm : 2 ×
22 21 fovcl A 2 1 A Y rm 1
23 1 22 mpan2 A 2 A Y rm 1
24 20 23 sselid A 2 A Y rm 1
25 eluzelz A 2 A
26 zq A A
27 25 26 syl A 2 A
28 20 1 sselii 1
29 28 a1i A 2 1
30 qirropth A 2 1 A X rm 1 A Y rm 1 A 1 A X rm 1 + A 2 1 A Y rm 1 = A + A 2 1 1 A X rm 1 = A A Y rm 1 = 1
31 14 19 24 27 29 30 syl122anc A 2 A X rm 1 + A 2 1 A Y rm 1 = A + A 2 1 1 A X rm 1 = A A Y rm 1 = 1
32 13 31 mpbid A 2 A X rm 1 = A A Y rm 1 = 1