Metamath Proof Explorer


Theorem rmxy1

Description: Value of the X and Y sequences at 1. (Contributed by Stefan O'Rear, 22-Sep-2014)

Ref Expression
Assertion rmxy1 A2AXrm1=AAYrm1=1

Proof

Step Hyp Ref Expression
1 1z 1
2 rmxyval A21AXrm1+A21AYrm1=A+A211
3 1 2 mpan2 A2AXrm1+A21AYrm1=A+A211
4 rmbaserp A2A+A21+
5 4 rpcnd A2A+A21
6 5 exp1d A2A+A211=A+A21
7 rmspecpos A2A21+
8 7 rpcnd A2A21
9 8 sqrtcld A2A21
10 9 mulridd A2A211=A21
11 10 eqcomd A2A21=A211
12 11 oveq2d A2A+A21=A+A211
13 3 6 12 3eqtrd A2AXrm1+A21AYrm1=A+A211
14 rmspecsqrtnq A2A21
15 nn0ssq 0
16 frmx Xrm:2×0
17 16 fovcl A21AXrm10
18 1 17 mpan2 A2AXrm10
19 15 18 sselid A2AXrm1
20 zssq
21 frmy Yrm:2×
22 21 fovcl A21AYrm1
23 1 22 mpan2 A2AYrm1
24 20 23 sselid A2AYrm1
25 eluzelz A2A
26 zq AA
27 25 26 syl A2A
28 20 1 sselii 1
29 28 a1i A21
30 qirropth A21AXrm1AYrm1A1AXrm1+A21AYrm1=A+A211AXrm1=AAYrm1=1
31 14 19 24 27 29 30 syl122anc A2AXrm1+A21AYrm1=A+A211AXrm1=AAYrm1=1
32 13 31 mpbid A2AXrm1=AAYrm1=1