Step |
Hyp |
Ref |
Expression |
1 |
|
sadval.a |
|- ( ph -> A C_ NN0 ) |
2 |
|
sadval.b |
|- ( ph -> B C_ NN0 ) |
3 |
|
sadval.c |
|- C = seq 0 ( ( c e. 2o , m e. NN0 |-> if ( cadd ( m e. A , m e. B , (/) e. c ) , 1o , (/) ) ) , ( n e. NN0 |-> if ( n = 0 , (/) , ( n - 1 ) ) ) ) |
4 |
|
sadcp1.n |
|- ( ph -> N e. NN0 ) |
5 |
|
sadcadd.k |
|- K = `' ( bits |` NN0 ) |
6 |
|
oveq2 |
|- ( x = 0 -> ( 0 ..^ x ) = ( 0 ..^ 0 ) ) |
7 |
|
fzo0 |
|- ( 0 ..^ 0 ) = (/) |
8 |
6 7
|
eqtrdi |
|- ( x = 0 -> ( 0 ..^ x ) = (/) ) |
9 |
8
|
ineq2d |
|- ( x = 0 -> ( ( A sadd B ) i^i ( 0 ..^ x ) ) = ( ( A sadd B ) i^i (/) ) ) |
10 |
|
in0 |
|- ( ( A sadd B ) i^i (/) ) = (/) |
11 |
9 10
|
eqtrdi |
|- ( x = 0 -> ( ( A sadd B ) i^i ( 0 ..^ x ) ) = (/) ) |
12 |
11
|
fveq2d |
|- ( x = 0 -> ( K ` ( ( A sadd B ) i^i ( 0 ..^ x ) ) ) = ( K ` (/) ) ) |
13 |
|
0nn0 |
|- 0 e. NN0 |
14 |
|
fvres |
|- ( 0 e. NN0 -> ( ( bits |` NN0 ) ` 0 ) = ( bits ` 0 ) ) |
15 |
13 14
|
ax-mp |
|- ( ( bits |` NN0 ) ` 0 ) = ( bits ` 0 ) |
16 |
|
0bits |
|- ( bits ` 0 ) = (/) |
17 |
15 16
|
eqtr2i |
|- (/) = ( ( bits |` NN0 ) ` 0 ) |
18 |
5 17
|
fveq12i |
|- ( K ` (/) ) = ( `' ( bits |` NN0 ) ` ( ( bits |` NN0 ) ` 0 ) ) |
19 |
|
bitsf1o |
|- ( bits |` NN0 ) : NN0 -1-1-onto-> ( ~P NN0 i^i Fin ) |
20 |
|
f1ocnvfv1 |
|- ( ( ( bits |` NN0 ) : NN0 -1-1-onto-> ( ~P NN0 i^i Fin ) /\ 0 e. NN0 ) -> ( `' ( bits |` NN0 ) ` ( ( bits |` NN0 ) ` 0 ) ) = 0 ) |
21 |
19 13 20
|
mp2an |
|- ( `' ( bits |` NN0 ) ` ( ( bits |` NN0 ) ` 0 ) ) = 0 |
22 |
18 21
|
eqtri |
|- ( K ` (/) ) = 0 |
23 |
12 22
|
eqtrdi |
|- ( x = 0 -> ( K ` ( ( A sadd B ) i^i ( 0 ..^ x ) ) ) = 0 ) |
24 |
|
fveq2 |
|- ( x = 0 -> ( C ` x ) = ( C ` 0 ) ) |
25 |
24
|
eleq2d |
|- ( x = 0 -> ( (/) e. ( C ` x ) <-> (/) e. ( C ` 0 ) ) ) |
26 |
|
oveq2 |
|- ( x = 0 -> ( 2 ^ x ) = ( 2 ^ 0 ) ) |
27 |
25 26
|
ifbieq1d |
|- ( x = 0 -> if ( (/) e. ( C ` x ) , ( 2 ^ x ) , 0 ) = if ( (/) e. ( C ` 0 ) , ( 2 ^ 0 ) , 0 ) ) |
28 |
23 27
|
oveq12d |
|- ( x = 0 -> ( ( K ` ( ( A sadd B ) i^i ( 0 ..^ x ) ) ) + if ( (/) e. ( C ` x ) , ( 2 ^ x ) , 0 ) ) = ( 0 + if ( (/) e. ( C ` 0 ) , ( 2 ^ 0 ) , 0 ) ) ) |
29 |
8
|
ineq2d |
|- ( x = 0 -> ( A i^i ( 0 ..^ x ) ) = ( A i^i (/) ) ) |
30 |
|
in0 |
|- ( A i^i (/) ) = (/) |
31 |
29 30
|
eqtrdi |
|- ( x = 0 -> ( A i^i ( 0 ..^ x ) ) = (/) ) |
32 |
31
|
fveq2d |
|- ( x = 0 -> ( K ` ( A i^i ( 0 ..^ x ) ) ) = ( K ` (/) ) ) |
33 |
32 22
|
eqtrdi |
|- ( x = 0 -> ( K ` ( A i^i ( 0 ..^ x ) ) ) = 0 ) |
34 |
8
|
ineq2d |
|- ( x = 0 -> ( B i^i ( 0 ..^ x ) ) = ( B i^i (/) ) ) |
35 |
|
in0 |
|- ( B i^i (/) ) = (/) |
36 |
34 35
|
eqtrdi |
|- ( x = 0 -> ( B i^i ( 0 ..^ x ) ) = (/) ) |
37 |
36
|
fveq2d |
|- ( x = 0 -> ( K ` ( B i^i ( 0 ..^ x ) ) ) = ( K ` (/) ) ) |
38 |
37 22
|
eqtrdi |
|- ( x = 0 -> ( K ` ( B i^i ( 0 ..^ x ) ) ) = 0 ) |
39 |
33 38
|
oveq12d |
|- ( x = 0 -> ( ( K ` ( A i^i ( 0 ..^ x ) ) ) + ( K ` ( B i^i ( 0 ..^ x ) ) ) ) = ( 0 + 0 ) ) |
40 |
|
00id |
|- ( 0 + 0 ) = 0 |
41 |
39 40
|
eqtrdi |
|- ( x = 0 -> ( ( K ` ( A i^i ( 0 ..^ x ) ) ) + ( K ` ( B i^i ( 0 ..^ x ) ) ) ) = 0 ) |
42 |
28 41
|
eqeq12d |
|- ( x = 0 -> ( ( ( K ` ( ( A sadd B ) i^i ( 0 ..^ x ) ) ) + if ( (/) e. ( C ` x ) , ( 2 ^ x ) , 0 ) ) = ( ( K ` ( A i^i ( 0 ..^ x ) ) ) + ( K ` ( B i^i ( 0 ..^ x ) ) ) ) <-> ( 0 + if ( (/) e. ( C ` 0 ) , ( 2 ^ 0 ) , 0 ) ) = 0 ) ) |
43 |
42
|
imbi2d |
|- ( x = 0 -> ( ( ph -> ( ( K ` ( ( A sadd B ) i^i ( 0 ..^ x ) ) ) + if ( (/) e. ( C ` x ) , ( 2 ^ x ) , 0 ) ) = ( ( K ` ( A i^i ( 0 ..^ x ) ) ) + ( K ` ( B i^i ( 0 ..^ x ) ) ) ) ) <-> ( ph -> ( 0 + if ( (/) e. ( C ` 0 ) , ( 2 ^ 0 ) , 0 ) ) = 0 ) ) ) |
44 |
|
oveq2 |
|- ( x = k -> ( 0 ..^ x ) = ( 0 ..^ k ) ) |
45 |
44
|
ineq2d |
|- ( x = k -> ( ( A sadd B ) i^i ( 0 ..^ x ) ) = ( ( A sadd B ) i^i ( 0 ..^ k ) ) ) |
46 |
45
|
fveq2d |
|- ( x = k -> ( K ` ( ( A sadd B ) i^i ( 0 ..^ x ) ) ) = ( K ` ( ( A sadd B ) i^i ( 0 ..^ k ) ) ) ) |
47 |
|
fveq2 |
|- ( x = k -> ( C ` x ) = ( C ` k ) ) |
48 |
47
|
eleq2d |
|- ( x = k -> ( (/) e. ( C ` x ) <-> (/) e. ( C ` k ) ) ) |
49 |
|
oveq2 |
|- ( x = k -> ( 2 ^ x ) = ( 2 ^ k ) ) |
50 |
48 49
|
ifbieq1d |
|- ( x = k -> if ( (/) e. ( C ` x ) , ( 2 ^ x ) , 0 ) = if ( (/) e. ( C ` k ) , ( 2 ^ k ) , 0 ) ) |
51 |
46 50
|
oveq12d |
|- ( x = k -> ( ( K ` ( ( A sadd B ) i^i ( 0 ..^ x ) ) ) + if ( (/) e. ( C ` x ) , ( 2 ^ x ) , 0 ) ) = ( ( K ` ( ( A sadd B ) i^i ( 0 ..^ k ) ) ) + if ( (/) e. ( C ` k ) , ( 2 ^ k ) , 0 ) ) ) |
52 |
44
|
ineq2d |
|- ( x = k -> ( A i^i ( 0 ..^ x ) ) = ( A i^i ( 0 ..^ k ) ) ) |
53 |
52
|
fveq2d |
|- ( x = k -> ( K ` ( A i^i ( 0 ..^ x ) ) ) = ( K ` ( A i^i ( 0 ..^ k ) ) ) ) |
54 |
44
|
ineq2d |
|- ( x = k -> ( B i^i ( 0 ..^ x ) ) = ( B i^i ( 0 ..^ k ) ) ) |
55 |
54
|
fveq2d |
|- ( x = k -> ( K ` ( B i^i ( 0 ..^ x ) ) ) = ( K ` ( B i^i ( 0 ..^ k ) ) ) ) |
56 |
53 55
|
oveq12d |
|- ( x = k -> ( ( K ` ( A i^i ( 0 ..^ x ) ) ) + ( K ` ( B i^i ( 0 ..^ x ) ) ) ) = ( ( K ` ( A i^i ( 0 ..^ k ) ) ) + ( K ` ( B i^i ( 0 ..^ k ) ) ) ) ) |
57 |
51 56
|
eqeq12d |
|- ( x = k -> ( ( ( K ` ( ( A sadd B ) i^i ( 0 ..^ x ) ) ) + if ( (/) e. ( C ` x ) , ( 2 ^ x ) , 0 ) ) = ( ( K ` ( A i^i ( 0 ..^ x ) ) ) + ( K ` ( B i^i ( 0 ..^ x ) ) ) ) <-> ( ( K ` ( ( A sadd B ) i^i ( 0 ..^ k ) ) ) + if ( (/) e. ( C ` k ) , ( 2 ^ k ) , 0 ) ) = ( ( K ` ( A i^i ( 0 ..^ k ) ) ) + ( K ` ( B i^i ( 0 ..^ k ) ) ) ) ) ) |
58 |
57
|
imbi2d |
|- ( x = k -> ( ( ph -> ( ( K ` ( ( A sadd B ) i^i ( 0 ..^ x ) ) ) + if ( (/) e. ( C ` x ) , ( 2 ^ x ) , 0 ) ) = ( ( K ` ( A i^i ( 0 ..^ x ) ) ) + ( K ` ( B i^i ( 0 ..^ x ) ) ) ) ) <-> ( ph -> ( ( K ` ( ( A sadd B ) i^i ( 0 ..^ k ) ) ) + if ( (/) e. ( C ` k ) , ( 2 ^ k ) , 0 ) ) = ( ( K ` ( A i^i ( 0 ..^ k ) ) ) + ( K ` ( B i^i ( 0 ..^ k ) ) ) ) ) ) ) |
59 |
|
oveq2 |
|- ( x = ( k + 1 ) -> ( 0 ..^ x ) = ( 0 ..^ ( k + 1 ) ) ) |
60 |
59
|
ineq2d |
|- ( x = ( k + 1 ) -> ( ( A sadd B ) i^i ( 0 ..^ x ) ) = ( ( A sadd B ) i^i ( 0 ..^ ( k + 1 ) ) ) ) |
61 |
60
|
fveq2d |
|- ( x = ( k + 1 ) -> ( K ` ( ( A sadd B ) i^i ( 0 ..^ x ) ) ) = ( K ` ( ( A sadd B ) i^i ( 0 ..^ ( k + 1 ) ) ) ) ) |
62 |
|
fveq2 |
|- ( x = ( k + 1 ) -> ( C ` x ) = ( C ` ( k + 1 ) ) ) |
63 |
62
|
eleq2d |
|- ( x = ( k + 1 ) -> ( (/) e. ( C ` x ) <-> (/) e. ( C ` ( k + 1 ) ) ) ) |
64 |
|
oveq2 |
|- ( x = ( k + 1 ) -> ( 2 ^ x ) = ( 2 ^ ( k + 1 ) ) ) |
65 |
63 64
|
ifbieq1d |
|- ( x = ( k + 1 ) -> if ( (/) e. ( C ` x ) , ( 2 ^ x ) , 0 ) = if ( (/) e. ( C ` ( k + 1 ) ) , ( 2 ^ ( k + 1 ) ) , 0 ) ) |
66 |
61 65
|
oveq12d |
|- ( x = ( k + 1 ) -> ( ( K ` ( ( A sadd B ) i^i ( 0 ..^ x ) ) ) + if ( (/) e. ( C ` x ) , ( 2 ^ x ) , 0 ) ) = ( ( K ` ( ( A sadd B ) i^i ( 0 ..^ ( k + 1 ) ) ) ) + if ( (/) e. ( C ` ( k + 1 ) ) , ( 2 ^ ( k + 1 ) ) , 0 ) ) ) |
67 |
59
|
ineq2d |
|- ( x = ( k + 1 ) -> ( A i^i ( 0 ..^ x ) ) = ( A i^i ( 0 ..^ ( k + 1 ) ) ) ) |
68 |
67
|
fveq2d |
|- ( x = ( k + 1 ) -> ( K ` ( A i^i ( 0 ..^ x ) ) ) = ( K ` ( A i^i ( 0 ..^ ( k + 1 ) ) ) ) ) |
69 |
59
|
ineq2d |
|- ( x = ( k + 1 ) -> ( B i^i ( 0 ..^ x ) ) = ( B i^i ( 0 ..^ ( k + 1 ) ) ) ) |
70 |
69
|
fveq2d |
|- ( x = ( k + 1 ) -> ( K ` ( B i^i ( 0 ..^ x ) ) ) = ( K ` ( B i^i ( 0 ..^ ( k + 1 ) ) ) ) ) |
71 |
68 70
|
oveq12d |
|- ( x = ( k + 1 ) -> ( ( K ` ( A i^i ( 0 ..^ x ) ) ) + ( K ` ( B i^i ( 0 ..^ x ) ) ) ) = ( ( K ` ( A i^i ( 0 ..^ ( k + 1 ) ) ) ) + ( K ` ( B i^i ( 0 ..^ ( k + 1 ) ) ) ) ) ) |
72 |
66 71
|
eqeq12d |
|- ( x = ( k + 1 ) -> ( ( ( K ` ( ( A sadd B ) i^i ( 0 ..^ x ) ) ) + if ( (/) e. ( C ` x ) , ( 2 ^ x ) , 0 ) ) = ( ( K ` ( A i^i ( 0 ..^ x ) ) ) + ( K ` ( B i^i ( 0 ..^ x ) ) ) ) <-> ( ( K ` ( ( A sadd B ) i^i ( 0 ..^ ( k + 1 ) ) ) ) + if ( (/) e. ( C ` ( k + 1 ) ) , ( 2 ^ ( k + 1 ) ) , 0 ) ) = ( ( K ` ( A i^i ( 0 ..^ ( k + 1 ) ) ) ) + ( K ` ( B i^i ( 0 ..^ ( k + 1 ) ) ) ) ) ) ) |
73 |
72
|
imbi2d |
|- ( x = ( k + 1 ) -> ( ( ph -> ( ( K ` ( ( A sadd B ) i^i ( 0 ..^ x ) ) ) + if ( (/) e. ( C ` x ) , ( 2 ^ x ) , 0 ) ) = ( ( K ` ( A i^i ( 0 ..^ x ) ) ) + ( K ` ( B i^i ( 0 ..^ x ) ) ) ) ) <-> ( ph -> ( ( K ` ( ( A sadd B ) i^i ( 0 ..^ ( k + 1 ) ) ) ) + if ( (/) e. ( C ` ( k + 1 ) ) , ( 2 ^ ( k + 1 ) ) , 0 ) ) = ( ( K ` ( A i^i ( 0 ..^ ( k + 1 ) ) ) ) + ( K ` ( B i^i ( 0 ..^ ( k + 1 ) ) ) ) ) ) ) ) |
74 |
|
oveq2 |
|- ( x = N -> ( 0 ..^ x ) = ( 0 ..^ N ) ) |
75 |
74
|
ineq2d |
|- ( x = N -> ( ( A sadd B ) i^i ( 0 ..^ x ) ) = ( ( A sadd B ) i^i ( 0 ..^ N ) ) ) |
76 |
75
|
fveq2d |
|- ( x = N -> ( K ` ( ( A sadd B ) i^i ( 0 ..^ x ) ) ) = ( K ` ( ( A sadd B ) i^i ( 0 ..^ N ) ) ) ) |
77 |
|
fveq2 |
|- ( x = N -> ( C ` x ) = ( C ` N ) ) |
78 |
77
|
eleq2d |
|- ( x = N -> ( (/) e. ( C ` x ) <-> (/) e. ( C ` N ) ) ) |
79 |
|
oveq2 |
|- ( x = N -> ( 2 ^ x ) = ( 2 ^ N ) ) |
80 |
78 79
|
ifbieq1d |
|- ( x = N -> if ( (/) e. ( C ` x ) , ( 2 ^ x ) , 0 ) = if ( (/) e. ( C ` N ) , ( 2 ^ N ) , 0 ) ) |
81 |
76 80
|
oveq12d |
|- ( x = N -> ( ( K ` ( ( A sadd B ) i^i ( 0 ..^ x ) ) ) + if ( (/) e. ( C ` x ) , ( 2 ^ x ) , 0 ) ) = ( ( K ` ( ( A sadd B ) i^i ( 0 ..^ N ) ) ) + if ( (/) e. ( C ` N ) , ( 2 ^ N ) , 0 ) ) ) |
82 |
74
|
ineq2d |
|- ( x = N -> ( A i^i ( 0 ..^ x ) ) = ( A i^i ( 0 ..^ N ) ) ) |
83 |
82
|
fveq2d |
|- ( x = N -> ( K ` ( A i^i ( 0 ..^ x ) ) ) = ( K ` ( A i^i ( 0 ..^ N ) ) ) ) |
84 |
74
|
ineq2d |
|- ( x = N -> ( B i^i ( 0 ..^ x ) ) = ( B i^i ( 0 ..^ N ) ) ) |
85 |
84
|
fveq2d |
|- ( x = N -> ( K ` ( B i^i ( 0 ..^ x ) ) ) = ( K ` ( B i^i ( 0 ..^ N ) ) ) ) |
86 |
83 85
|
oveq12d |
|- ( x = N -> ( ( K ` ( A i^i ( 0 ..^ x ) ) ) + ( K ` ( B i^i ( 0 ..^ x ) ) ) ) = ( ( K ` ( A i^i ( 0 ..^ N ) ) ) + ( K ` ( B i^i ( 0 ..^ N ) ) ) ) ) |
87 |
81 86
|
eqeq12d |
|- ( x = N -> ( ( ( K ` ( ( A sadd B ) i^i ( 0 ..^ x ) ) ) + if ( (/) e. ( C ` x ) , ( 2 ^ x ) , 0 ) ) = ( ( K ` ( A i^i ( 0 ..^ x ) ) ) + ( K ` ( B i^i ( 0 ..^ x ) ) ) ) <-> ( ( K ` ( ( A sadd B ) i^i ( 0 ..^ N ) ) ) + if ( (/) e. ( C ` N ) , ( 2 ^ N ) , 0 ) ) = ( ( K ` ( A i^i ( 0 ..^ N ) ) ) + ( K ` ( B i^i ( 0 ..^ N ) ) ) ) ) ) |
88 |
87
|
imbi2d |
|- ( x = N -> ( ( ph -> ( ( K ` ( ( A sadd B ) i^i ( 0 ..^ x ) ) ) + if ( (/) e. ( C ` x ) , ( 2 ^ x ) , 0 ) ) = ( ( K ` ( A i^i ( 0 ..^ x ) ) ) + ( K ` ( B i^i ( 0 ..^ x ) ) ) ) ) <-> ( ph -> ( ( K ` ( ( A sadd B ) i^i ( 0 ..^ N ) ) ) + if ( (/) e. ( C ` N ) , ( 2 ^ N ) , 0 ) ) = ( ( K ` ( A i^i ( 0 ..^ N ) ) ) + ( K ` ( B i^i ( 0 ..^ N ) ) ) ) ) ) ) |
89 |
1 2 3
|
sadc0 |
|- ( ph -> -. (/) e. ( C ` 0 ) ) |
90 |
89
|
iffalsed |
|- ( ph -> if ( (/) e. ( C ` 0 ) , ( 2 ^ 0 ) , 0 ) = 0 ) |
91 |
90
|
oveq2d |
|- ( ph -> ( 0 + if ( (/) e. ( C ` 0 ) , ( 2 ^ 0 ) , 0 ) ) = ( 0 + 0 ) ) |
92 |
91 40
|
eqtrdi |
|- ( ph -> ( 0 + if ( (/) e. ( C ` 0 ) , ( 2 ^ 0 ) , 0 ) ) = 0 ) |
93 |
1
|
ad2antrr |
|- ( ( ( ph /\ k e. NN0 ) /\ ( ( K ` ( ( A sadd B ) i^i ( 0 ..^ k ) ) ) + if ( (/) e. ( C ` k ) , ( 2 ^ k ) , 0 ) ) = ( ( K ` ( A i^i ( 0 ..^ k ) ) ) + ( K ` ( B i^i ( 0 ..^ k ) ) ) ) ) -> A C_ NN0 ) |
94 |
2
|
ad2antrr |
|- ( ( ( ph /\ k e. NN0 ) /\ ( ( K ` ( ( A sadd B ) i^i ( 0 ..^ k ) ) ) + if ( (/) e. ( C ` k ) , ( 2 ^ k ) , 0 ) ) = ( ( K ` ( A i^i ( 0 ..^ k ) ) ) + ( K ` ( B i^i ( 0 ..^ k ) ) ) ) ) -> B C_ NN0 ) |
95 |
|
simplr |
|- ( ( ( ph /\ k e. NN0 ) /\ ( ( K ` ( ( A sadd B ) i^i ( 0 ..^ k ) ) ) + if ( (/) e. ( C ` k ) , ( 2 ^ k ) , 0 ) ) = ( ( K ` ( A i^i ( 0 ..^ k ) ) ) + ( K ` ( B i^i ( 0 ..^ k ) ) ) ) ) -> k e. NN0 ) |
96 |
|
simpr |
|- ( ( ( ph /\ k e. NN0 ) /\ ( ( K ` ( ( A sadd B ) i^i ( 0 ..^ k ) ) ) + if ( (/) e. ( C ` k ) , ( 2 ^ k ) , 0 ) ) = ( ( K ` ( A i^i ( 0 ..^ k ) ) ) + ( K ` ( B i^i ( 0 ..^ k ) ) ) ) ) -> ( ( K ` ( ( A sadd B ) i^i ( 0 ..^ k ) ) ) + if ( (/) e. ( C ` k ) , ( 2 ^ k ) , 0 ) ) = ( ( K ` ( A i^i ( 0 ..^ k ) ) ) + ( K ` ( B i^i ( 0 ..^ k ) ) ) ) ) |
97 |
93 94 3 95 5 96
|
sadadd2lem |
|- ( ( ( ph /\ k e. NN0 ) /\ ( ( K ` ( ( A sadd B ) i^i ( 0 ..^ k ) ) ) + if ( (/) e. ( C ` k ) , ( 2 ^ k ) , 0 ) ) = ( ( K ` ( A i^i ( 0 ..^ k ) ) ) + ( K ` ( B i^i ( 0 ..^ k ) ) ) ) ) -> ( ( K ` ( ( A sadd B ) i^i ( 0 ..^ ( k + 1 ) ) ) ) + if ( (/) e. ( C ` ( k + 1 ) ) , ( 2 ^ ( k + 1 ) ) , 0 ) ) = ( ( K ` ( A i^i ( 0 ..^ ( k + 1 ) ) ) ) + ( K ` ( B i^i ( 0 ..^ ( k + 1 ) ) ) ) ) ) |
98 |
97
|
ex |
|- ( ( ph /\ k e. NN0 ) -> ( ( ( K ` ( ( A sadd B ) i^i ( 0 ..^ k ) ) ) + if ( (/) e. ( C ` k ) , ( 2 ^ k ) , 0 ) ) = ( ( K ` ( A i^i ( 0 ..^ k ) ) ) + ( K ` ( B i^i ( 0 ..^ k ) ) ) ) -> ( ( K ` ( ( A sadd B ) i^i ( 0 ..^ ( k + 1 ) ) ) ) + if ( (/) e. ( C ` ( k + 1 ) ) , ( 2 ^ ( k + 1 ) ) , 0 ) ) = ( ( K ` ( A i^i ( 0 ..^ ( k + 1 ) ) ) ) + ( K ` ( B i^i ( 0 ..^ ( k + 1 ) ) ) ) ) ) ) |
99 |
98
|
expcom |
|- ( k e. NN0 -> ( ph -> ( ( ( K ` ( ( A sadd B ) i^i ( 0 ..^ k ) ) ) + if ( (/) e. ( C ` k ) , ( 2 ^ k ) , 0 ) ) = ( ( K ` ( A i^i ( 0 ..^ k ) ) ) + ( K ` ( B i^i ( 0 ..^ k ) ) ) ) -> ( ( K ` ( ( A sadd B ) i^i ( 0 ..^ ( k + 1 ) ) ) ) + if ( (/) e. ( C ` ( k + 1 ) ) , ( 2 ^ ( k + 1 ) ) , 0 ) ) = ( ( K ` ( A i^i ( 0 ..^ ( k + 1 ) ) ) ) + ( K ` ( B i^i ( 0 ..^ ( k + 1 ) ) ) ) ) ) ) ) |
100 |
99
|
a2d |
|- ( k e. NN0 -> ( ( ph -> ( ( K ` ( ( A sadd B ) i^i ( 0 ..^ k ) ) ) + if ( (/) e. ( C ` k ) , ( 2 ^ k ) , 0 ) ) = ( ( K ` ( A i^i ( 0 ..^ k ) ) ) + ( K ` ( B i^i ( 0 ..^ k ) ) ) ) ) -> ( ph -> ( ( K ` ( ( A sadd B ) i^i ( 0 ..^ ( k + 1 ) ) ) ) + if ( (/) e. ( C ` ( k + 1 ) ) , ( 2 ^ ( k + 1 ) ) , 0 ) ) = ( ( K ` ( A i^i ( 0 ..^ ( k + 1 ) ) ) ) + ( K ` ( B i^i ( 0 ..^ ( k + 1 ) ) ) ) ) ) ) ) |
101 |
43 58 73 88 92 100
|
nn0ind |
|- ( N e. NN0 -> ( ph -> ( ( K ` ( ( A sadd B ) i^i ( 0 ..^ N ) ) ) + if ( (/) e. ( C ` N ) , ( 2 ^ N ) , 0 ) ) = ( ( K ` ( A i^i ( 0 ..^ N ) ) ) + ( K ` ( B i^i ( 0 ..^ N ) ) ) ) ) ) |
102 |
4 101
|
mpcom |
|- ( ph -> ( ( K ` ( ( A sadd B ) i^i ( 0 ..^ N ) ) ) + if ( (/) e. ( C ` N ) , ( 2 ^ N ) , 0 ) ) = ( ( K ` ( A i^i ( 0 ..^ N ) ) ) + ( K ` ( B i^i ( 0 ..^ N ) ) ) ) ) |