Step |
Hyp |
Ref |
Expression |
1 |
|
sadval.a |
|
2 |
|
sadval.b |
|
3 |
|
sadval.c |
|
4 |
|
sadcp1.n |
|
5 |
|
sadcadd.k |
|
6 |
|
oveq2 |
|
7 |
|
fzo0 |
|
8 |
6 7
|
eqtrdi |
|
9 |
8
|
ineq2d |
|
10 |
|
in0 |
|
11 |
9 10
|
eqtrdi |
|
12 |
11
|
fveq2d |
|
13 |
|
0nn0 |
|
14 |
|
fvres |
|
15 |
13 14
|
ax-mp |
|
16 |
|
0bits |
|
17 |
15 16
|
eqtr2i |
|
18 |
5 17
|
fveq12i |
|
19 |
|
bitsf1o |
|
20 |
|
f1ocnvfv1 |
|
21 |
19 13 20
|
mp2an |
|
22 |
18 21
|
eqtri |
|
23 |
12 22
|
eqtrdi |
|
24 |
|
fveq2 |
|
25 |
24
|
eleq2d |
|
26 |
|
oveq2 |
|
27 |
25 26
|
ifbieq1d |
|
28 |
23 27
|
oveq12d |
|
29 |
8
|
ineq2d |
|
30 |
|
in0 |
|
31 |
29 30
|
eqtrdi |
|
32 |
31
|
fveq2d |
|
33 |
32 22
|
eqtrdi |
|
34 |
8
|
ineq2d |
|
35 |
|
in0 |
|
36 |
34 35
|
eqtrdi |
|
37 |
36
|
fveq2d |
|
38 |
37 22
|
eqtrdi |
|
39 |
33 38
|
oveq12d |
|
40 |
|
00id |
|
41 |
39 40
|
eqtrdi |
|
42 |
28 41
|
eqeq12d |
|
43 |
42
|
imbi2d |
|
44 |
|
oveq2 |
|
45 |
44
|
ineq2d |
|
46 |
45
|
fveq2d |
|
47 |
|
fveq2 |
|
48 |
47
|
eleq2d |
|
49 |
|
oveq2 |
|
50 |
48 49
|
ifbieq1d |
|
51 |
46 50
|
oveq12d |
|
52 |
44
|
ineq2d |
|
53 |
52
|
fveq2d |
|
54 |
44
|
ineq2d |
|
55 |
54
|
fveq2d |
|
56 |
53 55
|
oveq12d |
|
57 |
51 56
|
eqeq12d |
|
58 |
57
|
imbi2d |
|
59 |
|
oveq2 |
|
60 |
59
|
ineq2d |
|
61 |
60
|
fveq2d |
|
62 |
|
fveq2 |
|
63 |
62
|
eleq2d |
|
64 |
|
oveq2 |
|
65 |
63 64
|
ifbieq1d |
|
66 |
61 65
|
oveq12d |
|
67 |
59
|
ineq2d |
|
68 |
67
|
fveq2d |
|
69 |
59
|
ineq2d |
|
70 |
69
|
fveq2d |
|
71 |
68 70
|
oveq12d |
|
72 |
66 71
|
eqeq12d |
|
73 |
72
|
imbi2d |
|
74 |
|
oveq2 |
|
75 |
74
|
ineq2d |
|
76 |
75
|
fveq2d |
|
77 |
|
fveq2 |
|
78 |
77
|
eleq2d |
|
79 |
|
oveq2 |
|
80 |
78 79
|
ifbieq1d |
|
81 |
76 80
|
oveq12d |
|
82 |
74
|
ineq2d |
|
83 |
82
|
fveq2d |
|
84 |
74
|
ineq2d |
|
85 |
84
|
fveq2d |
|
86 |
83 85
|
oveq12d |
|
87 |
81 86
|
eqeq12d |
|
88 |
87
|
imbi2d |
|
89 |
1 2 3
|
sadc0 |
|
90 |
89
|
iffalsed |
|
91 |
90
|
oveq2d |
|
92 |
91 40
|
eqtrdi |
|
93 |
1
|
ad2antrr |
|
94 |
2
|
ad2antrr |
|
95 |
|
simplr |
|
96 |
|
simpr |
|
97 |
93 94 3 95 5 96
|
sadadd2lem |
|
98 |
97
|
ex |
|
99 |
98
|
expcom |
|
100 |
99
|
a2d |
|
101 |
43 58 73 88 92 100
|
nn0ind |
|
102 |
4 101
|
mpcom |
|