| Step |
Hyp |
Ref |
Expression |
| 1 |
|
shuni.1 |
|- ( ph -> H e. SH ) |
| 2 |
|
shuni.2 |
|- ( ph -> K e. SH ) |
| 3 |
|
shuni.3 |
|- ( ph -> ( H i^i K ) = 0H ) |
| 4 |
|
shuni.4 |
|- ( ph -> A e. H ) |
| 5 |
|
shuni.5 |
|- ( ph -> B e. K ) |
| 6 |
|
shuni.6 |
|- ( ph -> C e. H ) |
| 7 |
|
shuni.7 |
|- ( ph -> D e. K ) |
| 8 |
|
shuni.8 |
|- ( ph -> ( A +h B ) = ( C +h D ) ) |
| 9 |
|
shsubcl |
|- ( ( H e. SH /\ A e. H /\ C e. H ) -> ( A -h C ) e. H ) |
| 10 |
1 4 6 9
|
syl3anc |
|- ( ph -> ( A -h C ) e. H ) |
| 11 |
|
shel |
|- ( ( H e. SH /\ A e. H ) -> A e. ~H ) |
| 12 |
1 4 11
|
syl2anc |
|- ( ph -> A e. ~H ) |
| 13 |
|
shel |
|- ( ( K e. SH /\ B e. K ) -> B e. ~H ) |
| 14 |
2 5 13
|
syl2anc |
|- ( ph -> B e. ~H ) |
| 15 |
|
shel |
|- ( ( H e. SH /\ C e. H ) -> C e. ~H ) |
| 16 |
1 6 15
|
syl2anc |
|- ( ph -> C e. ~H ) |
| 17 |
|
shel |
|- ( ( K e. SH /\ D e. K ) -> D e. ~H ) |
| 18 |
2 7 17
|
syl2anc |
|- ( ph -> D e. ~H ) |
| 19 |
|
hvaddsub4 |
|- ( ( ( A e. ~H /\ B e. ~H ) /\ ( C e. ~H /\ D e. ~H ) ) -> ( ( A +h B ) = ( C +h D ) <-> ( A -h C ) = ( D -h B ) ) ) |
| 20 |
12 14 16 18 19
|
syl22anc |
|- ( ph -> ( ( A +h B ) = ( C +h D ) <-> ( A -h C ) = ( D -h B ) ) ) |
| 21 |
8 20
|
mpbid |
|- ( ph -> ( A -h C ) = ( D -h B ) ) |
| 22 |
|
shsubcl |
|- ( ( K e. SH /\ D e. K /\ B e. K ) -> ( D -h B ) e. K ) |
| 23 |
2 7 5 22
|
syl3anc |
|- ( ph -> ( D -h B ) e. K ) |
| 24 |
21 23
|
eqeltrd |
|- ( ph -> ( A -h C ) e. K ) |
| 25 |
10 24
|
elind |
|- ( ph -> ( A -h C ) e. ( H i^i K ) ) |
| 26 |
25 3
|
eleqtrd |
|- ( ph -> ( A -h C ) e. 0H ) |
| 27 |
|
elch0 |
|- ( ( A -h C ) e. 0H <-> ( A -h C ) = 0h ) |
| 28 |
26 27
|
sylib |
|- ( ph -> ( A -h C ) = 0h ) |
| 29 |
|
hvsubeq0 |
|- ( ( A e. ~H /\ C e. ~H ) -> ( ( A -h C ) = 0h <-> A = C ) ) |
| 30 |
12 16 29
|
syl2anc |
|- ( ph -> ( ( A -h C ) = 0h <-> A = C ) ) |
| 31 |
28 30
|
mpbid |
|- ( ph -> A = C ) |
| 32 |
21 28
|
eqtr3d |
|- ( ph -> ( D -h B ) = 0h ) |
| 33 |
|
hvsubeq0 |
|- ( ( D e. ~H /\ B e. ~H ) -> ( ( D -h B ) = 0h <-> D = B ) ) |
| 34 |
18 14 33
|
syl2anc |
|- ( ph -> ( ( D -h B ) = 0h <-> D = B ) ) |
| 35 |
32 34
|
mpbid |
|- ( ph -> D = B ) |
| 36 |
35
|
eqcomd |
|- ( ph -> B = D ) |
| 37 |
31 36
|
jca |
|- ( ph -> ( A = C /\ B = D ) ) |