Metamath Proof Explorer


Theorem shuni

Description: Two subspaces with trivial intersection have a unique decomposition of the elements of the subspace sum. (Contributed by Mario Carneiro, 15-May-2014) (New usage is discouraged.)

Ref Expression
Hypotheses shuni.1 ( 𝜑𝐻S )
shuni.2 ( 𝜑𝐾S )
shuni.3 ( 𝜑 → ( 𝐻𝐾 ) = 0 )
shuni.4 ( 𝜑𝐴𝐻 )
shuni.5 ( 𝜑𝐵𝐾 )
shuni.6 ( 𝜑𝐶𝐻 )
shuni.7 ( 𝜑𝐷𝐾 )
shuni.8 ( 𝜑 → ( 𝐴 + 𝐵 ) = ( 𝐶 + 𝐷 ) )
Assertion shuni ( 𝜑 → ( 𝐴 = 𝐶𝐵 = 𝐷 ) )

Proof

Step Hyp Ref Expression
1 shuni.1 ( 𝜑𝐻S )
2 shuni.2 ( 𝜑𝐾S )
3 shuni.3 ( 𝜑 → ( 𝐻𝐾 ) = 0 )
4 shuni.4 ( 𝜑𝐴𝐻 )
5 shuni.5 ( 𝜑𝐵𝐾 )
6 shuni.6 ( 𝜑𝐶𝐻 )
7 shuni.7 ( 𝜑𝐷𝐾 )
8 shuni.8 ( 𝜑 → ( 𝐴 + 𝐵 ) = ( 𝐶 + 𝐷 ) )
9 shsubcl ( ( 𝐻S𝐴𝐻𝐶𝐻 ) → ( 𝐴 𝐶 ) ∈ 𝐻 )
10 1 4 6 9 syl3anc ( 𝜑 → ( 𝐴 𝐶 ) ∈ 𝐻 )
11 shel ( ( 𝐻S𝐴𝐻 ) → 𝐴 ∈ ℋ )
12 1 4 11 syl2anc ( 𝜑𝐴 ∈ ℋ )
13 shel ( ( 𝐾S𝐵𝐾 ) → 𝐵 ∈ ℋ )
14 2 5 13 syl2anc ( 𝜑𝐵 ∈ ℋ )
15 shel ( ( 𝐻S𝐶𝐻 ) → 𝐶 ∈ ℋ )
16 1 6 15 syl2anc ( 𝜑𝐶 ∈ ℋ )
17 shel ( ( 𝐾S𝐷𝐾 ) → 𝐷 ∈ ℋ )
18 2 7 17 syl2anc ( 𝜑𝐷 ∈ ℋ )
19 hvaddsub4 ( ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) ∧ ( 𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ ) ) → ( ( 𝐴 + 𝐵 ) = ( 𝐶 + 𝐷 ) ↔ ( 𝐴 𝐶 ) = ( 𝐷 𝐵 ) ) )
20 12 14 16 18 19 syl22anc ( 𝜑 → ( ( 𝐴 + 𝐵 ) = ( 𝐶 + 𝐷 ) ↔ ( 𝐴 𝐶 ) = ( 𝐷 𝐵 ) ) )
21 8 20 mpbid ( 𝜑 → ( 𝐴 𝐶 ) = ( 𝐷 𝐵 ) )
22 shsubcl ( ( 𝐾S𝐷𝐾𝐵𝐾 ) → ( 𝐷 𝐵 ) ∈ 𝐾 )
23 2 7 5 22 syl3anc ( 𝜑 → ( 𝐷 𝐵 ) ∈ 𝐾 )
24 21 23 eqeltrd ( 𝜑 → ( 𝐴 𝐶 ) ∈ 𝐾 )
25 10 24 elind ( 𝜑 → ( 𝐴 𝐶 ) ∈ ( 𝐻𝐾 ) )
26 25 3 eleqtrd ( 𝜑 → ( 𝐴 𝐶 ) ∈ 0 )
27 elch0 ( ( 𝐴 𝐶 ) ∈ 0 ↔ ( 𝐴 𝐶 ) = 0 )
28 26 27 sylib ( 𝜑 → ( 𝐴 𝐶 ) = 0 )
29 hvsubeq0 ( ( 𝐴 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( ( 𝐴 𝐶 ) = 0𝐴 = 𝐶 ) )
30 12 16 29 syl2anc ( 𝜑 → ( ( 𝐴 𝐶 ) = 0𝐴 = 𝐶 ) )
31 28 30 mpbid ( 𝜑𝐴 = 𝐶 )
32 21 28 eqtr3d ( 𝜑 → ( 𝐷 𝐵 ) = 0 )
33 hvsubeq0 ( ( 𝐷 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( ( 𝐷 𝐵 ) = 0𝐷 = 𝐵 ) )
34 18 14 33 syl2anc ( 𝜑 → ( ( 𝐷 𝐵 ) = 0𝐷 = 𝐵 ) )
35 32 34 mpbid ( 𝜑𝐷 = 𝐵 )
36 35 eqcomd ( 𝜑𝐵 = 𝐷 )
37 31 36 jca ( 𝜑 → ( 𝐴 = 𝐶𝐵 = 𝐷 ) )