| Step |
Hyp |
Ref |
Expression |
| 1 |
|
signslema.1 |
|- ( ph -> E e. NN0 ) |
| 2 |
|
signslema.2 |
|- ( ph -> F e. NN0 ) |
| 3 |
|
signslema.3 |
|- ( ph -> G e. NN0 ) |
| 4 |
|
signslema.4 |
|- ( ph -> H e. NN0 ) |
| 5 |
|
signslema.5 |
|- ( ph -> ( E < G /\ -. 2 || ( G - E ) ) ) |
| 6 |
|
signslema.6 |
|- ( ph -> ( ( H - G ) - ( F - E ) ) e. { 0 , 2 } ) |
| 7 |
5
|
simpld |
|- ( ph -> E < G ) |
| 8 |
7
|
adantr |
|- ( ( ph /\ ( ( H - F ) - ( G - E ) ) = 0 ) -> E < G ) |
| 9 |
4
|
nn0cnd |
|- ( ph -> H e. CC ) |
| 10 |
2
|
nn0cnd |
|- ( ph -> F e. CC ) |
| 11 |
9 10
|
subcld |
|- ( ph -> ( H - F ) e. CC ) |
| 12 |
3
|
nn0cnd |
|- ( ph -> G e. CC ) |
| 13 |
1
|
nn0cnd |
|- ( ph -> E e. CC ) |
| 14 |
12 13
|
subcld |
|- ( ph -> ( G - E ) e. CC ) |
| 15 |
11 14
|
subeq0ad |
|- ( ph -> ( ( ( H - F ) - ( G - E ) ) = 0 <-> ( H - F ) = ( G - E ) ) ) |
| 16 |
15
|
biimpa |
|- ( ( ph /\ ( ( H - F ) - ( G - E ) ) = 0 ) -> ( H - F ) = ( G - E ) ) |
| 17 |
16
|
breq2d |
|- ( ( ph /\ ( ( H - F ) - ( G - E ) ) = 0 ) -> ( 0 < ( H - F ) <-> 0 < ( G - E ) ) ) |
| 18 |
2
|
nn0red |
|- ( ph -> F e. RR ) |
| 19 |
4
|
nn0red |
|- ( ph -> H e. RR ) |
| 20 |
18 19
|
posdifd |
|- ( ph -> ( F < H <-> 0 < ( H - F ) ) ) |
| 21 |
20
|
adantr |
|- ( ( ph /\ ( ( H - F ) - ( G - E ) ) = 0 ) -> ( F < H <-> 0 < ( H - F ) ) ) |
| 22 |
1
|
nn0red |
|- ( ph -> E e. RR ) |
| 23 |
3
|
nn0red |
|- ( ph -> G e. RR ) |
| 24 |
22 23
|
posdifd |
|- ( ph -> ( E < G <-> 0 < ( G - E ) ) ) |
| 25 |
24
|
adantr |
|- ( ( ph /\ ( ( H - F ) - ( G - E ) ) = 0 ) -> ( E < G <-> 0 < ( G - E ) ) ) |
| 26 |
17 21 25
|
3bitr4rd |
|- ( ( ph /\ ( ( H - F ) - ( G - E ) ) = 0 ) -> ( E < G <-> F < H ) ) |
| 27 |
8 26
|
mpbid |
|- ( ( ph /\ ( ( H - F ) - ( G - E ) ) = 0 ) -> F < H ) |
| 28 |
|
0red |
|- ( ( ph /\ ( ( H - F ) - ( G - E ) ) = 2 ) -> 0 e. RR ) |
| 29 |
23 22
|
resubcld |
|- ( ph -> ( G - E ) e. RR ) |
| 30 |
29
|
adantr |
|- ( ( ph /\ ( ( H - F ) - ( G - E ) ) = 2 ) -> ( G - E ) e. RR ) |
| 31 |
19 18
|
resubcld |
|- ( ph -> ( H - F ) e. RR ) |
| 32 |
31
|
adantr |
|- ( ( ph /\ ( ( H - F ) - ( G - E ) ) = 2 ) -> ( H - F ) e. RR ) |
| 33 |
7
|
adantr |
|- ( ( ph /\ ( ( H - F ) - ( G - E ) ) = 2 ) -> E < G ) |
| 34 |
24
|
adantr |
|- ( ( ph /\ ( ( H - F ) - ( G - E ) ) = 2 ) -> ( E < G <-> 0 < ( G - E ) ) ) |
| 35 |
33 34
|
mpbid |
|- ( ( ph /\ ( ( H - F ) - ( G - E ) ) = 2 ) -> 0 < ( G - E ) ) |
| 36 |
|
2pos |
|- 0 < 2 |
| 37 |
|
breq2 |
|- ( ( ( H - F ) - ( G - E ) ) = 2 -> ( 0 < ( ( H - F ) - ( G - E ) ) <-> 0 < 2 ) ) |
| 38 |
36 37
|
mpbiri |
|- ( ( ( H - F ) - ( G - E ) ) = 2 -> 0 < ( ( H - F ) - ( G - E ) ) ) |
| 39 |
29 31
|
posdifd |
|- ( ph -> ( ( G - E ) < ( H - F ) <-> 0 < ( ( H - F ) - ( G - E ) ) ) ) |
| 40 |
39
|
biimpar |
|- ( ( ph /\ 0 < ( ( H - F ) - ( G - E ) ) ) -> ( G - E ) < ( H - F ) ) |
| 41 |
38 40
|
sylan2 |
|- ( ( ph /\ ( ( H - F ) - ( G - E ) ) = 2 ) -> ( G - E ) < ( H - F ) ) |
| 42 |
28 30 32 35 41
|
lttrd |
|- ( ( ph /\ ( ( H - F ) - ( G - E ) ) = 2 ) -> 0 < ( H - F ) ) |
| 43 |
20
|
adantr |
|- ( ( ph /\ ( ( H - F ) - ( G - E ) ) = 2 ) -> ( F < H <-> 0 < ( H - F ) ) ) |
| 44 |
42 43
|
mpbird |
|- ( ( ph /\ ( ( H - F ) - ( G - E ) ) = 2 ) -> F < H ) |
| 45 |
9 12 10 13
|
sub4d |
|- ( ph -> ( ( H - G ) - ( F - E ) ) = ( ( H - F ) - ( G - E ) ) ) |
| 46 |
45 6
|
eqeltrrd |
|- ( ph -> ( ( H - F ) - ( G - E ) ) e. { 0 , 2 } ) |
| 47 |
|
ovex |
|- ( ( H - F ) - ( G - E ) ) e. _V |
| 48 |
47
|
elpr |
|- ( ( ( H - F ) - ( G - E ) ) e. { 0 , 2 } <-> ( ( ( H - F ) - ( G - E ) ) = 0 \/ ( ( H - F ) - ( G - E ) ) = 2 ) ) |
| 49 |
46 48
|
sylib |
|- ( ph -> ( ( ( H - F ) - ( G - E ) ) = 0 \/ ( ( H - F ) - ( G - E ) ) = 2 ) ) |
| 50 |
27 44 49
|
mpjaodan |
|- ( ph -> F < H ) |
| 51 |
5
|
simprd |
|- ( ph -> -. 2 || ( G - E ) ) |
| 52 |
51
|
adantr |
|- ( ( ph /\ ( ( H - F ) - ( G - E ) ) = 0 ) -> -. 2 || ( G - E ) ) |
| 53 |
16
|
breq2d |
|- ( ( ph /\ ( ( H - F ) - ( G - E ) ) = 0 ) -> ( 2 || ( H - F ) <-> 2 || ( G - E ) ) ) |
| 54 |
52 53
|
mtbird |
|- ( ( ph /\ ( ( H - F ) - ( G - E ) ) = 0 ) -> -. 2 || ( H - F ) ) |
| 55 |
|
2z |
|- 2 e. ZZ |
| 56 |
3
|
nn0zd |
|- ( ph -> G e. ZZ ) |
| 57 |
1
|
nn0zd |
|- ( ph -> E e. ZZ ) |
| 58 |
56 57
|
zsubcld |
|- ( ph -> ( G - E ) e. ZZ ) |
| 59 |
|
dvdsaddr |
|- ( ( 2 e. ZZ /\ ( G - E ) e. ZZ ) -> ( 2 || ( G - E ) <-> 2 || ( ( G - E ) + 2 ) ) ) |
| 60 |
55 58 59
|
sylancr |
|- ( ph -> ( 2 || ( G - E ) <-> 2 || ( ( G - E ) + 2 ) ) ) |
| 61 |
51 60
|
mtbid |
|- ( ph -> -. 2 || ( ( G - E ) + 2 ) ) |
| 62 |
61
|
adantr |
|- ( ( ph /\ ( ( H - F ) - ( G - E ) ) = 2 ) -> -. 2 || ( ( G - E ) + 2 ) ) |
| 63 |
|
2cnd |
|- ( ph -> 2 e. CC ) |
| 64 |
11 14 63
|
subaddd |
|- ( ph -> ( ( ( H - F ) - ( G - E ) ) = 2 <-> ( ( G - E ) + 2 ) = ( H - F ) ) ) |
| 65 |
64
|
biimpa |
|- ( ( ph /\ ( ( H - F ) - ( G - E ) ) = 2 ) -> ( ( G - E ) + 2 ) = ( H - F ) ) |
| 66 |
65
|
breq2d |
|- ( ( ph /\ ( ( H - F ) - ( G - E ) ) = 2 ) -> ( 2 || ( ( G - E ) + 2 ) <-> 2 || ( H - F ) ) ) |
| 67 |
62 66
|
mtbid |
|- ( ( ph /\ ( ( H - F ) - ( G - E ) ) = 2 ) -> -. 2 || ( H - F ) ) |
| 68 |
54 67 49
|
mpjaodan |
|- ( ph -> -. 2 || ( H - F ) ) |
| 69 |
50 68
|
jca |
|- ( ph -> ( F < H /\ -. 2 || ( H - F ) ) ) |