| Step | Hyp | Ref | Expression | 
						
							| 1 |  | signslema.1 |  |-  ( ph -> E e. NN0 ) | 
						
							| 2 |  | signslema.2 |  |-  ( ph -> F e. NN0 ) | 
						
							| 3 |  | signslema.3 |  |-  ( ph -> G e. NN0 ) | 
						
							| 4 |  | signslema.4 |  |-  ( ph -> H e. NN0 ) | 
						
							| 5 |  | signslema.5 |  |-  ( ph -> ( E < G /\ -. 2 || ( G - E ) ) ) | 
						
							| 6 |  | signslema.6 |  |-  ( ph -> ( ( H - G ) - ( F - E ) ) e. { 0 , 2 } ) | 
						
							| 7 | 5 | simpld |  |-  ( ph -> E < G ) | 
						
							| 8 | 7 | adantr |  |-  ( ( ph /\ ( ( H - F ) - ( G - E ) ) = 0 ) -> E < G ) | 
						
							| 9 | 4 | nn0cnd |  |-  ( ph -> H e. CC ) | 
						
							| 10 | 2 | nn0cnd |  |-  ( ph -> F e. CC ) | 
						
							| 11 | 9 10 | subcld |  |-  ( ph -> ( H - F ) e. CC ) | 
						
							| 12 | 3 | nn0cnd |  |-  ( ph -> G e. CC ) | 
						
							| 13 | 1 | nn0cnd |  |-  ( ph -> E e. CC ) | 
						
							| 14 | 12 13 | subcld |  |-  ( ph -> ( G - E ) e. CC ) | 
						
							| 15 | 11 14 | subeq0ad |  |-  ( ph -> ( ( ( H - F ) - ( G - E ) ) = 0 <-> ( H - F ) = ( G - E ) ) ) | 
						
							| 16 | 15 | biimpa |  |-  ( ( ph /\ ( ( H - F ) - ( G - E ) ) = 0 ) -> ( H - F ) = ( G - E ) ) | 
						
							| 17 | 16 | breq2d |  |-  ( ( ph /\ ( ( H - F ) - ( G - E ) ) = 0 ) -> ( 0 < ( H - F ) <-> 0 < ( G - E ) ) ) | 
						
							| 18 | 2 | nn0red |  |-  ( ph -> F e. RR ) | 
						
							| 19 | 4 | nn0red |  |-  ( ph -> H e. RR ) | 
						
							| 20 | 18 19 | posdifd |  |-  ( ph -> ( F < H <-> 0 < ( H - F ) ) ) | 
						
							| 21 | 20 | adantr |  |-  ( ( ph /\ ( ( H - F ) - ( G - E ) ) = 0 ) -> ( F < H <-> 0 < ( H - F ) ) ) | 
						
							| 22 | 1 | nn0red |  |-  ( ph -> E e. RR ) | 
						
							| 23 | 3 | nn0red |  |-  ( ph -> G e. RR ) | 
						
							| 24 | 22 23 | posdifd |  |-  ( ph -> ( E < G <-> 0 < ( G - E ) ) ) | 
						
							| 25 | 24 | adantr |  |-  ( ( ph /\ ( ( H - F ) - ( G - E ) ) = 0 ) -> ( E < G <-> 0 < ( G - E ) ) ) | 
						
							| 26 | 17 21 25 | 3bitr4rd |  |-  ( ( ph /\ ( ( H - F ) - ( G - E ) ) = 0 ) -> ( E < G <-> F < H ) ) | 
						
							| 27 | 8 26 | mpbid |  |-  ( ( ph /\ ( ( H - F ) - ( G - E ) ) = 0 ) -> F < H ) | 
						
							| 28 |  | 0red |  |-  ( ( ph /\ ( ( H - F ) - ( G - E ) ) = 2 ) -> 0 e. RR ) | 
						
							| 29 | 23 22 | resubcld |  |-  ( ph -> ( G - E ) e. RR ) | 
						
							| 30 | 29 | adantr |  |-  ( ( ph /\ ( ( H - F ) - ( G - E ) ) = 2 ) -> ( G - E ) e. RR ) | 
						
							| 31 | 19 18 | resubcld |  |-  ( ph -> ( H - F ) e. RR ) | 
						
							| 32 | 31 | adantr |  |-  ( ( ph /\ ( ( H - F ) - ( G - E ) ) = 2 ) -> ( H - F ) e. RR ) | 
						
							| 33 | 7 | adantr |  |-  ( ( ph /\ ( ( H - F ) - ( G - E ) ) = 2 ) -> E < G ) | 
						
							| 34 | 24 | adantr |  |-  ( ( ph /\ ( ( H - F ) - ( G - E ) ) = 2 ) -> ( E < G <-> 0 < ( G - E ) ) ) | 
						
							| 35 | 33 34 | mpbid |  |-  ( ( ph /\ ( ( H - F ) - ( G - E ) ) = 2 ) -> 0 < ( G - E ) ) | 
						
							| 36 |  | 2pos |  |-  0 < 2 | 
						
							| 37 |  | breq2 |  |-  ( ( ( H - F ) - ( G - E ) ) = 2 -> ( 0 < ( ( H - F ) - ( G - E ) ) <-> 0 < 2 ) ) | 
						
							| 38 | 36 37 | mpbiri |  |-  ( ( ( H - F ) - ( G - E ) ) = 2 -> 0 < ( ( H - F ) - ( G - E ) ) ) | 
						
							| 39 | 29 31 | posdifd |  |-  ( ph -> ( ( G - E ) < ( H - F ) <-> 0 < ( ( H - F ) - ( G - E ) ) ) ) | 
						
							| 40 | 39 | biimpar |  |-  ( ( ph /\ 0 < ( ( H - F ) - ( G - E ) ) ) -> ( G - E ) < ( H - F ) ) | 
						
							| 41 | 38 40 | sylan2 |  |-  ( ( ph /\ ( ( H - F ) - ( G - E ) ) = 2 ) -> ( G - E ) < ( H - F ) ) | 
						
							| 42 | 28 30 32 35 41 | lttrd |  |-  ( ( ph /\ ( ( H - F ) - ( G - E ) ) = 2 ) -> 0 < ( H - F ) ) | 
						
							| 43 | 20 | adantr |  |-  ( ( ph /\ ( ( H - F ) - ( G - E ) ) = 2 ) -> ( F < H <-> 0 < ( H - F ) ) ) | 
						
							| 44 | 42 43 | mpbird |  |-  ( ( ph /\ ( ( H - F ) - ( G - E ) ) = 2 ) -> F < H ) | 
						
							| 45 | 9 12 10 13 | sub4d |  |-  ( ph -> ( ( H - G ) - ( F - E ) ) = ( ( H - F ) - ( G - E ) ) ) | 
						
							| 46 | 45 6 | eqeltrrd |  |-  ( ph -> ( ( H - F ) - ( G - E ) ) e. { 0 , 2 } ) | 
						
							| 47 |  | ovex |  |-  ( ( H - F ) - ( G - E ) ) e. _V | 
						
							| 48 | 47 | elpr |  |-  ( ( ( H - F ) - ( G - E ) ) e. { 0 , 2 } <-> ( ( ( H - F ) - ( G - E ) ) = 0 \/ ( ( H - F ) - ( G - E ) ) = 2 ) ) | 
						
							| 49 | 46 48 | sylib |  |-  ( ph -> ( ( ( H - F ) - ( G - E ) ) = 0 \/ ( ( H - F ) - ( G - E ) ) = 2 ) ) | 
						
							| 50 | 27 44 49 | mpjaodan |  |-  ( ph -> F < H ) | 
						
							| 51 | 5 | simprd |  |-  ( ph -> -. 2 || ( G - E ) ) | 
						
							| 52 | 51 | adantr |  |-  ( ( ph /\ ( ( H - F ) - ( G - E ) ) = 0 ) -> -. 2 || ( G - E ) ) | 
						
							| 53 | 16 | breq2d |  |-  ( ( ph /\ ( ( H - F ) - ( G - E ) ) = 0 ) -> ( 2 || ( H - F ) <-> 2 || ( G - E ) ) ) | 
						
							| 54 | 52 53 | mtbird |  |-  ( ( ph /\ ( ( H - F ) - ( G - E ) ) = 0 ) -> -. 2 || ( H - F ) ) | 
						
							| 55 |  | 2z |  |-  2 e. ZZ | 
						
							| 56 | 3 | nn0zd |  |-  ( ph -> G e. ZZ ) | 
						
							| 57 | 1 | nn0zd |  |-  ( ph -> E e. ZZ ) | 
						
							| 58 | 56 57 | zsubcld |  |-  ( ph -> ( G - E ) e. ZZ ) | 
						
							| 59 |  | dvdsaddr |  |-  ( ( 2 e. ZZ /\ ( G - E ) e. ZZ ) -> ( 2 || ( G - E ) <-> 2 || ( ( G - E ) + 2 ) ) ) | 
						
							| 60 | 55 58 59 | sylancr |  |-  ( ph -> ( 2 || ( G - E ) <-> 2 || ( ( G - E ) + 2 ) ) ) | 
						
							| 61 | 51 60 | mtbid |  |-  ( ph -> -. 2 || ( ( G - E ) + 2 ) ) | 
						
							| 62 | 61 | adantr |  |-  ( ( ph /\ ( ( H - F ) - ( G - E ) ) = 2 ) -> -. 2 || ( ( G - E ) + 2 ) ) | 
						
							| 63 |  | 2cnd |  |-  ( ph -> 2 e. CC ) | 
						
							| 64 | 11 14 63 | subaddd |  |-  ( ph -> ( ( ( H - F ) - ( G - E ) ) = 2 <-> ( ( G - E ) + 2 ) = ( H - F ) ) ) | 
						
							| 65 | 64 | biimpa |  |-  ( ( ph /\ ( ( H - F ) - ( G - E ) ) = 2 ) -> ( ( G - E ) + 2 ) = ( H - F ) ) | 
						
							| 66 | 65 | breq2d |  |-  ( ( ph /\ ( ( H - F ) - ( G - E ) ) = 2 ) -> ( 2 || ( ( G - E ) + 2 ) <-> 2 || ( H - F ) ) ) | 
						
							| 67 | 62 66 | mtbid |  |-  ( ( ph /\ ( ( H - F ) - ( G - E ) ) = 2 ) -> -. 2 || ( H - F ) ) | 
						
							| 68 | 54 67 49 | mpjaodan |  |-  ( ph -> -. 2 || ( H - F ) ) | 
						
							| 69 | 50 68 | jca |  |-  ( ph -> ( F < H /\ -. 2 || ( H - F ) ) ) |