| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sinperlem.1 |
|- ( A e. CC -> ( F ` A ) = ( ( ( exp ` ( _i x. A ) ) O ( exp ` ( -u _i x. A ) ) ) / D ) ) |
| 2 |
|
sinperlem.2 |
|- ( ( A + ( K x. ( 2 x. _pi ) ) ) e. CC -> ( F ` ( A + ( K x. ( 2 x. _pi ) ) ) ) = ( ( ( exp ` ( _i x. ( A + ( K x. ( 2 x. _pi ) ) ) ) ) O ( exp ` ( -u _i x. ( A + ( K x. ( 2 x. _pi ) ) ) ) ) ) / D ) ) |
| 3 |
|
zcn |
|- ( K e. ZZ -> K e. CC ) |
| 4 |
|
2cn |
|- 2 e. CC |
| 5 |
|
picn |
|- _pi e. CC |
| 6 |
4 5
|
mulcli |
|- ( 2 x. _pi ) e. CC |
| 7 |
|
mulcl |
|- ( ( K e. CC /\ ( 2 x. _pi ) e. CC ) -> ( K x. ( 2 x. _pi ) ) e. CC ) |
| 8 |
3 6 7
|
sylancl |
|- ( K e. ZZ -> ( K x. ( 2 x. _pi ) ) e. CC ) |
| 9 |
|
ax-icn |
|- _i e. CC |
| 10 |
|
adddi |
|- ( ( _i e. CC /\ A e. CC /\ ( K x. ( 2 x. _pi ) ) e. CC ) -> ( _i x. ( A + ( K x. ( 2 x. _pi ) ) ) ) = ( ( _i x. A ) + ( _i x. ( K x. ( 2 x. _pi ) ) ) ) ) |
| 11 |
9 10
|
mp3an1 |
|- ( ( A e. CC /\ ( K x. ( 2 x. _pi ) ) e. CC ) -> ( _i x. ( A + ( K x. ( 2 x. _pi ) ) ) ) = ( ( _i x. A ) + ( _i x. ( K x. ( 2 x. _pi ) ) ) ) ) |
| 12 |
8 11
|
sylan2 |
|- ( ( A e. CC /\ K e. ZZ ) -> ( _i x. ( A + ( K x. ( 2 x. _pi ) ) ) ) = ( ( _i x. A ) + ( _i x. ( K x. ( 2 x. _pi ) ) ) ) ) |
| 13 |
|
mul12 |
|- ( ( _i e. CC /\ K e. CC /\ ( 2 x. _pi ) e. CC ) -> ( _i x. ( K x. ( 2 x. _pi ) ) ) = ( K x. ( _i x. ( 2 x. _pi ) ) ) ) |
| 14 |
9 6 13
|
mp3an13 |
|- ( K e. CC -> ( _i x. ( K x. ( 2 x. _pi ) ) ) = ( K x. ( _i x. ( 2 x. _pi ) ) ) ) |
| 15 |
3 14
|
syl |
|- ( K e. ZZ -> ( _i x. ( K x. ( 2 x. _pi ) ) ) = ( K x. ( _i x. ( 2 x. _pi ) ) ) ) |
| 16 |
9 6
|
mulcli |
|- ( _i x. ( 2 x. _pi ) ) e. CC |
| 17 |
|
mulcom |
|- ( ( K e. CC /\ ( _i x. ( 2 x. _pi ) ) e. CC ) -> ( K x. ( _i x. ( 2 x. _pi ) ) ) = ( ( _i x. ( 2 x. _pi ) ) x. K ) ) |
| 18 |
3 16 17
|
sylancl |
|- ( K e. ZZ -> ( K x. ( _i x. ( 2 x. _pi ) ) ) = ( ( _i x. ( 2 x. _pi ) ) x. K ) ) |
| 19 |
15 18
|
eqtrd |
|- ( K e. ZZ -> ( _i x. ( K x. ( 2 x. _pi ) ) ) = ( ( _i x. ( 2 x. _pi ) ) x. K ) ) |
| 20 |
19
|
adantl |
|- ( ( A e. CC /\ K e. ZZ ) -> ( _i x. ( K x. ( 2 x. _pi ) ) ) = ( ( _i x. ( 2 x. _pi ) ) x. K ) ) |
| 21 |
20
|
oveq2d |
|- ( ( A e. CC /\ K e. ZZ ) -> ( ( _i x. A ) + ( _i x. ( K x. ( 2 x. _pi ) ) ) ) = ( ( _i x. A ) + ( ( _i x. ( 2 x. _pi ) ) x. K ) ) ) |
| 22 |
12 21
|
eqtrd |
|- ( ( A e. CC /\ K e. ZZ ) -> ( _i x. ( A + ( K x. ( 2 x. _pi ) ) ) ) = ( ( _i x. A ) + ( ( _i x. ( 2 x. _pi ) ) x. K ) ) ) |
| 23 |
22
|
fveq2d |
|- ( ( A e. CC /\ K e. ZZ ) -> ( exp ` ( _i x. ( A + ( K x. ( 2 x. _pi ) ) ) ) ) = ( exp ` ( ( _i x. A ) + ( ( _i x. ( 2 x. _pi ) ) x. K ) ) ) ) |
| 24 |
|
mulcl |
|- ( ( _i e. CC /\ A e. CC ) -> ( _i x. A ) e. CC ) |
| 25 |
9 24
|
mpan |
|- ( A e. CC -> ( _i x. A ) e. CC ) |
| 26 |
|
efper |
|- ( ( ( _i x. A ) e. CC /\ K e. ZZ ) -> ( exp ` ( ( _i x. A ) + ( ( _i x. ( 2 x. _pi ) ) x. K ) ) ) = ( exp ` ( _i x. A ) ) ) |
| 27 |
25 26
|
sylan |
|- ( ( A e. CC /\ K e. ZZ ) -> ( exp ` ( ( _i x. A ) + ( ( _i x. ( 2 x. _pi ) ) x. K ) ) ) = ( exp ` ( _i x. A ) ) ) |
| 28 |
23 27
|
eqtrd |
|- ( ( A e. CC /\ K e. ZZ ) -> ( exp ` ( _i x. ( A + ( K x. ( 2 x. _pi ) ) ) ) ) = ( exp ` ( _i x. A ) ) ) |
| 29 |
|
negicn |
|- -u _i e. CC |
| 30 |
|
adddi |
|- ( ( -u _i e. CC /\ A e. CC /\ ( K x. ( 2 x. _pi ) ) e. CC ) -> ( -u _i x. ( A + ( K x. ( 2 x. _pi ) ) ) ) = ( ( -u _i x. A ) + ( -u _i x. ( K x. ( 2 x. _pi ) ) ) ) ) |
| 31 |
29 30
|
mp3an1 |
|- ( ( A e. CC /\ ( K x. ( 2 x. _pi ) ) e. CC ) -> ( -u _i x. ( A + ( K x. ( 2 x. _pi ) ) ) ) = ( ( -u _i x. A ) + ( -u _i x. ( K x. ( 2 x. _pi ) ) ) ) ) |
| 32 |
8 31
|
sylan2 |
|- ( ( A e. CC /\ K e. ZZ ) -> ( -u _i x. ( A + ( K x. ( 2 x. _pi ) ) ) ) = ( ( -u _i x. A ) + ( -u _i x. ( K x. ( 2 x. _pi ) ) ) ) ) |
| 33 |
19
|
negeqd |
|- ( K e. ZZ -> -u ( _i x. ( K x. ( 2 x. _pi ) ) ) = -u ( ( _i x. ( 2 x. _pi ) ) x. K ) ) |
| 34 |
|
mulneg1 |
|- ( ( _i e. CC /\ ( K x. ( 2 x. _pi ) ) e. CC ) -> ( -u _i x. ( K x. ( 2 x. _pi ) ) ) = -u ( _i x. ( K x. ( 2 x. _pi ) ) ) ) |
| 35 |
9 8 34
|
sylancr |
|- ( K e. ZZ -> ( -u _i x. ( K x. ( 2 x. _pi ) ) ) = -u ( _i x. ( K x. ( 2 x. _pi ) ) ) ) |
| 36 |
|
mulneg2 |
|- ( ( ( _i x. ( 2 x. _pi ) ) e. CC /\ K e. CC ) -> ( ( _i x. ( 2 x. _pi ) ) x. -u K ) = -u ( ( _i x. ( 2 x. _pi ) ) x. K ) ) |
| 37 |
16 3 36
|
sylancr |
|- ( K e. ZZ -> ( ( _i x. ( 2 x. _pi ) ) x. -u K ) = -u ( ( _i x. ( 2 x. _pi ) ) x. K ) ) |
| 38 |
33 35 37
|
3eqtr4d |
|- ( K e. ZZ -> ( -u _i x. ( K x. ( 2 x. _pi ) ) ) = ( ( _i x. ( 2 x. _pi ) ) x. -u K ) ) |
| 39 |
38
|
adantl |
|- ( ( A e. CC /\ K e. ZZ ) -> ( -u _i x. ( K x. ( 2 x. _pi ) ) ) = ( ( _i x. ( 2 x. _pi ) ) x. -u K ) ) |
| 40 |
39
|
oveq2d |
|- ( ( A e. CC /\ K e. ZZ ) -> ( ( -u _i x. A ) + ( -u _i x. ( K x. ( 2 x. _pi ) ) ) ) = ( ( -u _i x. A ) + ( ( _i x. ( 2 x. _pi ) ) x. -u K ) ) ) |
| 41 |
32 40
|
eqtrd |
|- ( ( A e. CC /\ K e. ZZ ) -> ( -u _i x. ( A + ( K x. ( 2 x. _pi ) ) ) ) = ( ( -u _i x. A ) + ( ( _i x. ( 2 x. _pi ) ) x. -u K ) ) ) |
| 42 |
41
|
fveq2d |
|- ( ( A e. CC /\ K e. ZZ ) -> ( exp ` ( -u _i x. ( A + ( K x. ( 2 x. _pi ) ) ) ) ) = ( exp ` ( ( -u _i x. A ) + ( ( _i x. ( 2 x. _pi ) ) x. -u K ) ) ) ) |
| 43 |
|
mulcl |
|- ( ( -u _i e. CC /\ A e. CC ) -> ( -u _i x. A ) e. CC ) |
| 44 |
29 43
|
mpan |
|- ( A e. CC -> ( -u _i x. A ) e. CC ) |
| 45 |
|
znegcl |
|- ( K e. ZZ -> -u K e. ZZ ) |
| 46 |
|
efper |
|- ( ( ( -u _i x. A ) e. CC /\ -u K e. ZZ ) -> ( exp ` ( ( -u _i x. A ) + ( ( _i x. ( 2 x. _pi ) ) x. -u K ) ) ) = ( exp ` ( -u _i x. A ) ) ) |
| 47 |
44 45 46
|
syl2an |
|- ( ( A e. CC /\ K e. ZZ ) -> ( exp ` ( ( -u _i x. A ) + ( ( _i x. ( 2 x. _pi ) ) x. -u K ) ) ) = ( exp ` ( -u _i x. A ) ) ) |
| 48 |
42 47
|
eqtrd |
|- ( ( A e. CC /\ K e. ZZ ) -> ( exp ` ( -u _i x. ( A + ( K x. ( 2 x. _pi ) ) ) ) ) = ( exp ` ( -u _i x. A ) ) ) |
| 49 |
28 48
|
oveq12d |
|- ( ( A e. CC /\ K e. ZZ ) -> ( ( exp ` ( _i x. ( A + ( K x. ( 2 x. _pi ) ) ) ) ) O ( exp ` ( -u _i x. ( A + ( K x. ( 2 x. _pi ) ) ) ) ) ) = ( ( exp ` ( _i x. A ) ) O ( exp ` ( -u _i x. A ) ) ) ) |
| 50 |
49
|
oveq1d |
|- ( ( A e. CC /\ K e. ZZ ) -> ( ( ( exp ` ( _i x. ( A + ( K x. ( 2 x. _pi ) ) ) ) ) O ( exp ` ( -u _i x. ( A + ( K x. ( 2 x. _pi ) ) ) ) ) ) / D ) = ( ( ( exp ` ( _i x. A ) ) O ( exp ` ( -u _i x. A ) ) ) / D ) ) |
| 51 |
|
addcl |
|- ( ( A e. CC /\ ( K x. ( 2 x. _pi ) ) e. CC ) -> ( A + ( K x. ( 2 x. _pi ) ) ) e. CC ) |
| 52 |
8 51
|
sylan2 |
|- ( ( A e. CC /\ K e. ZZ ) -> ( A + ( K x. ( 2 x. _pi ) ) ) e. CC ) |
| 53 |
52 2
|
syl |
|- ( ( A e. CC /\ K e. ZZ ) -> ( F ` ( A + ( K x. ( 2 x. _pi ) ) ) ) = ( ( ( exp ` ( _i x. ( A + ( K x. ( 2 x. _pi ) ) ) ) ) O ( exp ` ( -u _i x. ( A + ( K x. ( 2 x. _pi ) ) ) ) ) ) / D ) ) |
| 54 |
1
|
adantr |
|- ( ( A e. CC /\ K e. ZZ ) -> ( F ` A ) = ( ( ( exp ` ( _i x. A ) ) O ( exp ` ( -u _i x. A ) ) ) / D ) ) |
| 55 |
50 53 54
|
3eqtr4d |
|- ( ( A e. CC /\ K e. ZZ ) -> ( F ` ( A + ( K x. ( 2 x. _pi ) ) ) ) = ( F ` A ) ) |