Step |
Hyp |
Ref |
Expression |
1 |
|
sinperlem.1 |
|- ( A e. CC -> ( F ` A ) = ( ( ( exp ` ( _i x. A ) ) O ( exp ` ( -u _i x. A ) ) ) / D ) ) |
2 |
|
sinperlem.2 |
|- ( ( A + ( K x. ( 2 x. _pi ) ) ) e. CC -> ( F ` ( A + ( K x. ( 2 x. _pi ) ) ) ) = ( ( ( exp ` ( _i x. ( A + ( K x. ( 2 x. _pi ) ) ) ) ) O ( exp ` ( -u _i x. ( A + ( K x. ( 2 x. _pi ) ) ) ) ) ) / D ) ) |
3 |
|
zcn |
|- ( K e. ZZ -> K e. CC ) |
4 |
|
2cn |
|- 2 e. CC |
5 |
|
picn |
|- _pi e. CC |
6 |
4 5
|
mulcli |
|- ( 2 x. _pi ) e. CC |
7 |
|
mulcl |
|- ( ( K e. CC /\ ( 2 x. _pi ) e. CC ) -> ( K x. ( 2 x. _pi ) ) e. CC ) |
8 |
3 6 7
|
sylancl |
|- ( K e. ZZ -> ( K x. ( 2 x. _pi ) ) e. CC ) |
9 |
|
ax-icn |
|- _i e. CC |
10 |
|
adddi |
|- ( ( _i e. CC /\ A e. CC /\ ( K x. ( 2 x. _pi ) ) e. CC ) -> ( _i x. ( A + ( K x. ( 2 x. _pi ) ) ) ) = ( ( _i x. A ) + ( _i x. ( K x. ( 2 x. _pi ) ) ) ) ) |
11 |
9 10
|
mp3an1 |
|- ( ( A e. CC /\ ( K x. ( 2 x. _pi ) ) e. CC ) -> ( _i x. ( A + ( K x. ( 2 x. _pi ) ) ) ) = ( ( _i x. A ) + ( _i x. ( K x. ( 2 x. _pi ) ) ) ) ) |
12 |
8 11
|
sylan2 |
|- ( ( A e. CC /\ K e. ZZ ) -> ( _i x. ( A + ( K x. ( 2 x. _pi ) ) ) ) = ( ( _i x. A ) + ( _i x. ( K x. ( 2 x. _pi ) ) ) ) ) |
13 |
|
mul12 |
|- ( ( _i e. CC /\ K e. CC /\ ( 2 x. _pi ) e. CC ) -> ( _i x. ( K x. ( 2 x. _pi ) ) ) = ( K x. ( _i x. ( 2 x. _pi ) ) ) ) |
14 |
9 6 13
|
mp3an13 |
|- ( K e. CC -> ( _i x. ( K x. ( 2 x. _pi ) ) ) = ( K x. ( _i x. ( 2 x. _pi ) ) ) ) |
15 |
3 14
|
syl |
|- ( K e. ZZ -> ( _i x. ( K x. ( 2 x. _pi ) ) ) = ( K x. ( _i x. ( 2 x. _pi ) ) ) ) |
16 |
9 6
|
mulcli |
|- ( _i x. ( 2 x. _pi ) ) e. CC |
17 |
|
mulcom |
|- ( ( K e. CC /\ ( _i x. ( 2 x. _pi ) ) e. CC ) -> ( K x. ( _i x. ( 2 x. _pi ) ) ) = ( ( _i x. ( 2 x. _pi ) ) x. K ) ) |
18 |
3 16 17
|
sylancl |
|- ( K e. ZZ -> ( K x. ( _i x. ( 2 x. _pi ) ) ) = ( ( _i x. ( 2 x. _pi ) ) x. K ) ) |
19 |
15 18
|
eqtrd |
|- ( K e. ZZ -> ( _i x. ( K x. ( 2 x. _pi ) ) ) = ( ( _i x. ( 2 x. _pi ) ) x. K ) ) |
20 |
19
|
adantl |
|- ( ( A e. CC /\ K e. ZZ ) -> ( _i x. ( K x. ( 2 x. _pi ) ) ) = ( ( _i x. ( 2 x. _pi ) ) x. K ) ) |
21 |
20
|
oveq2d |
|- ( ( A e. CC /\ K e. ZZ ) -> ( ( _i x. A ) + ( _i x. ( K x. ( 2 x. _pi ) ) ) ) = ( ( _i x. A ) + ( ( _i x. ( 2 x. _pi ) ) x. K ) ) ) |
22 |
12 21
|
eqtrd |
|- ( ( A e. CC /\ K e. ZZ ) -> ( _i x. ( A + ( K x. ( 2 x. _pi ) ) ) ) = ( ( _i x. A ) + ( ( _i x. ( 2 x. _pi ) ) x. K ) ) ) |
23 |
22
|
fveq2d |
|- ( ( A e. CC /\ K e. ZZ ) -> ( exp ` ( _i x. ( A + ( K x. ( 2 x. _pi ) ) ) ) ) = ( exp ` ( ( _i x. A ) + ( ( _i x. ( 2 x. _pi ) ) x. K ) ) ) ) |
24 |
|
mulcl |
|- ( ( _i e. CC /\ A e. CC ) -> ( _i x. A ) e. CC ) |
25 |
9 24
|
mpan |
|- ( A e. CC -> ( _i x. A ) e. CC ) |
26 |
|
efper |
|- ( ( ( _i x. A ) e. CC /\ K e. ZZ ) -> ( exp ` ( ( _i x. A ) + ( ( _i x. ( 2 x. _pi ) ) x. K ) ) ) = ( exp ` ( _i x. A ) ) ) |
27 |
25 26
|
sylan |
|- ( ( A e. CC /\ K e. ZZ ) -> ( exp ` ( ( _i x. A ) + ( ( _i x. ( 2 x. _pi ) ) x. K ) ) ) = ( exp ` ( _i x. A ) ) ) |
28 |
23 27
|
eqtrd |
|- ( ( A e. CC /\ K e. ZZ ) -> ( exp ` ( _i x. ( A + ( K x. ( 2 x. _pi ) ) ) ) ) = ( exp ` ( _i x. A ) ) ) |
29 |
|
negicn |
|- -u _i e. CC |
30 |
|
adddi |
|- ( ( -u _i e. CC /\ A e. CC /\ ( K x. ( 2 x. _pi ) ) e. CC ) -> ( -u _i x. ( A + ( K x. ( 2 x. _pi ) ) ) ) = ( ( -u _i x. A ) + ( -u _i x. ( K x. ( 2 x. _pi ) ) ) ) ) |
31 |
29 30
|
mp3an1 |
|- ( ( A e. CC /\ ( K x. ( 2 x. _pi ) ) e. CC ) -> ( -u _i x. ( A + ( K x. ( 2 x. _pi ) ) ) ) = ( ( -u _i x. A ) + ( -u _i x. ( K x. ( 2 x. _pi ) ) ) ) ) |
32 |
8 31
|
sylan2 |
|- ( ( A e. CC /\ K e. ZZ ) -> ( -u _i x. ( A + ( K x. ( 2 x. _pi ) ) ) ) = ( ( -u _i x. A ) + ( -u _i x. ( K x. ( 2 x. _pi ) ) ) ) ) |
33 |
19
|
negeqd |
|- ( K e. ZZ -> -u ( _i x. ( K x. ( 2 x. _pi ) ) ) = -u ( ( _i x. ( 2 x. _pi ) ) x. K ) ) |
34 |
|
mulneg1 |
|- ( ( _i e. CC /\ ( K x. ( 2 x. _pi ) ) e. CC ) -> ( -u _i x. ( K x. ( 2 x. _pi ) ) ) = -u ( _i x. ( K x. ( 2 x. _pi ) ) ) ) |
35 |
9 8 34
|
sylancr |
|- ( K e. ZZ -> ( -u _i x. ( K x. ( 2 x. _pi ) ) ) = -u ( _i x. ( K x. ( 2 x. _pi ) ) ) ) |
36 |
|
mulneg2 |
|- ( ( ( _i x. ( 2 x. _pi ) ) e. CC /\ K e. CC ) -> ( ( _i x. ( 2 x. _pi ) ) x. -u K ) = -u ( ( _i x. ( 2 x. _pi ) ) x. K ) ) |
37 |
16 3 36
|
sylancr |
|- ( K e. ZZ -> ( ( _i x. ( 2 x. _pi ) ) x. -u K ) = -u ( ( _i x. ( 2 x. _pi ) ) x. K ) ) |
38 |
33 35 37
|
3eqtr4d |
|- ( K e. ZZ -> ( -u _i x. ( K x. ( 2 x. _pi ) ) ) = ( ( _i x. ( 2 x. _pi ) ) x. -u K ) ) |
39 |
38
|
adantl |
|- ( ( A e. CC /\ K e. ZZ ) -> ( -u _i x. ( K x. ( 2 x. _pi ) ) ) = ( ( _i x. ( 2 x. _pi ) ) x. -u K ) ) |
40 |
39
|
oveq2d |
|- ( ( A e. CC /\ K e. ZZ ) -> ( ( -u _i x. A ) + ( -u _i x. ( K x. ( 2 x. _pi ) ) ) ) = ( ( -u _i x. A ) + ( ( _i x. ( 2 x. _pi ) ) x. -u K ) ) ) |
41 |
32 40
|
eqtrd |
|- ( ( A e. CC /\ K e. ZZ ) -> ( -u _i x. ( A + ( K x. ( 2 x. _pi ) ) ) ) = ( ( -u _i x. A ) + ( ( _i x. ( 2 x. _pi ) ) x. -u K ) ) ) |
42 |
41
|
fveq2d |
|- ( ( A e. CC /\ K e. ZZ ) -> ( exp ` ( -u _i x. ( A + ( K x. ( 2 x. _pi ) ) ) ) ) = ( exp ` ( ( -u _i x. A ) + ( ( _i x. ( 2 x. _pi ) ) x. -u K ) ) ) ) |
43 |
|
mulcl |
|- ( ( -u _i e. CC /\ A e. CC ) -> ( -u _i x. A ) e. CC ) |
44 |
29 43
|
mpan |
|- ( A e. CC -> ( -u _i x. A ) e. CC ) |
45 |
|
znegcl |
|- ( K e. ZZ -> -u K e. ZZ ) |
46 |
|
efper |
|- ( ( ( -u _i x. A ) e. CC /\ -u K e. ZZ ) -> ( exp ` ( ( -u _i x. A ) + ( ( _i x. ( 2 x. _pi ) ) x. -u K ) ) ) = ( exp ` ( -u _i x. A ) ) ) |
47 |
44 45 46
|
syl2an |
|- ( ( A e. CC /\ K e. ZZ ) -> ( exp ` ( ( -u _i x. A ) + ( ( _i x. ( 2 x. _pi ) ) x. -u K ) ) ) = ( exp ` ( -u _i x. A ) ) ) |
48 |
42 47
|
eqtrd |
|- ( ( A e. CC /\ K e. ZZ ) -> ( exp ` ( -u _i x. ( A + ( K x. ( 2 x. _pi ) ) ) ) ) = ( exp ` ( -u _i x. A ) ) ) |
49 |
28 48
|
oveq12d |
|- ( ( A e. CC /\ K e. ZZ ) -> ( ( exp ` ( _i x. ( A + ( K x. ( 2 x. _pi ) ) ) ) ) O ( exp ` ( -u _i x. ( A + ( K x. ( 2 x. _pi ) ) ) ) ) ) = ( ( exp ` ( _i x. A ) ) O ( exp ` ( -u _i x. A ) ) ) ) |
50 |
49
|
oveq1d |
|- ( ( A e. CC /\ K e. ZZ ) -> ( ( ( exp ` ( _i x. ( A + ( K x. ( 2 x. _pi ) ) ) ) ) O ( exp ` ( -u _i x. ( A + ( K x. ( 2 x. _pi ) ) ) ) ) ) / D ) = ( ( ( exp ` ( _i x. A ) ) O ( exp ` ( -u _i x. A ) ) ) / D ) ) |
51 |
|
addcl |
|- ( ( A e. CC /\ ( K x. ( 2 x. _pi ) ) e. CC ) -> ( A + ( K x. ( 2 x. _pi ) ) ) e. CC ) |
52 |
8 51
|
sylan2 |
|- ( ( A e. CC /\ K e. ZZ ) -> ( A + ( K x. ( 2 x. _pi ) ) ) e. CC ) |
53 |
52 2
|
syl |
|- ( ( A e. CC /\ K e. ZZ ) -> ( F ` ( A + ( K x. ( 2 x. _pi ) ) ) ) = ( ( ( exp ` ( _i x. ( A + ( K x. ( 2 x. _pi ) ) ) ) ) O ( exp ` ( -u _i x. ( A + ( K x. ( 2 x. _pi ) ) ) ) ) ) / D ) ) |
54 |
1
|
adantr |
|- ( ( A e. CC /\ K e. ZZ ) -> ( F ` A ) = ( ( ( exp ` ( _i x. A ) ) O ( exp ` ( -u _i x. A ) ) ) / D ) ) |
55 |
50 53 54
|
3eqtr4d |
|- ( ( A e. CC /\ K e. ZZ ) -> ( F ` ( A + ( K x. ( 2 x. _pi ) ) ) ) = ( F ` A ) ) |