| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 0re |  |-  0 e. RR | 
						
							| 2 |  | leloe |  |-  ( ( 0 e. RR /\ A e. RR ) -> ( 0 <_ A <-> ( 0 < A \/ 0 = A ) ) ) | 
						
							| 3 | 1 2 | mpan |  |-  ( A e. RR -> ( 0 <_ A <-> ( 0 < A \/ 0 = A ) ) ) | 
						
							| 4 |  | breq2 |  |-  ( x = A -> ( 0 < x <-> 0 < A ) ) | 
						
							| 5 |  | breq2 |  |-  ( x = A -> ( A < x <-> A < A ) ) | 
						
							| 6 | 4 5 | imbi12d |  |-  ( x = A -> ( ( 0 < x -> A < x ) <-> ( 0 < A -> A < A ) ) ) | 
						
							| 7 | 6 | rspcv |  |-  ( A e. RR -> ( A. x e. RR ( 0 < x -> A < x ) -> ( 0 < A -> A < A ) ) ) | 
						
							| 8 |  | ltnr |  |-  ( A e. RR -> -. A < A ) | 
						
							| 9 | 8 | pm2.21d |  |-  ( A e. RR -> ( A < A -> A = 0 ) ) | 
						
							| 10 | 9 | com12 |  |-  ( A < A -> ( A e. RR -> A = 0 ) ) | 
						
							| 11 | 10 | imim2i |  |-  ( ( 0 < A -> A < A ) -> ( 0 < A -> ( A e. RR -> A = 0 ) ) ) | 
						
							| 12 | 11 | com13 |  |-  ( A e. RR -> ( 0 < A -> ( ( 0 < A -> A < A ) -> A = 0 ) ) ) | 
						
							| 13 | 7 12 | syl5d |  |-  ( A e. RR -> ( 0 < A -> ( A. x e. RR ( 0 < x -> A < x ) -> A = 0 ) ) ) | 
						
							| 14 |  | ax-1 |  |-  ( A = 0 -> ( A. x e. RR ( 0 < x -> A < x ) -> A = 0 ) ) | 
						
							| 15 | 14 | eqcoms |  |-  ( 0 = A -> ( A. x e. RR ( 0 < x -> A < x ) -> A = 0 ) ) | 
						
							| 16 | 15 | a1i |  |-  ( A e. RR -> ( 0 = A -> ( A. x e. RR ( 0 < x -> A < x ) -> A = 0 ) ) ) | 
						
							| 17 | 13 16 | jaod |  |-  ( A e. RR -> ( ( 0 < A \/ 0 = A ) -> ( A. x e. RR ( 0 < x -> A < x ) -> A = 0 ) ) ) | 
						
							| 18 | 3 17 | sylbid |  |-  ( A e. RR -> ( 0 <_ A -> ( A. x e. RR ( 0 < x -> A < x ) -> A = 0 ) ) ) | 
						
							| 19 | 18 | 3imp |  |-  ( ( A e. RR /\ 0 <_ A /\ A. x e. RR ( 0 < x -> A < x ) ) -> A = 0 ) |