| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 0re | ⊢ 0  ∈  ℝ | 
						
							| 2 |  | leloe | ⊢ ( ( 0  ∈  ℝ  ∧  𝐴  ∈  ℝ )  →  ( 0  ≤  𝐴  ↔  ( 0  <  𝐴  ∨  0  =  𝐴 ) ) ) | 
						
							| 3 | 1 2 | mpan | ⊢ ( 𝐴  ∈  ℝ  →  ( 0  ≤  𝐴  ↔  ( 0  <  𝐴  ∨  0  =  𝐴 ) ) ) | 
						
							| 4 |  | breq2 | ⊢ ( 𝑥  =  𝐴  →  ( 0  <  𝑥  ↔  0  <  𝐴 ) ) | 
						
							| 5 |  | breq2 | ⊢ ( 𝑥  =  𝐴  →  ( 𝐴  <  𝑥  ↔  𝐴  <  𝐴 ) ) | 
						
							| 6 | 4 5 | imbi12d | ⊢ ( 𝑥  =  𝐴  →  ( ( 0  <  𝑥  →  𝐴  <  𝑥 )  ↔  ( 0  <  𝐴  →  𝐴  <  𝐴 ) ) ) | 
						
							| 7 | 6 | rspcv | ⊢ ( 𝐴  ∈  ℝ  →  ( ∀ 𝑥  ∈  ℝ ( 0  <  𝑥  →  𝐴  <  𝑥 )  →  ( 0  <  𝐴  →  𝐴  <  𝐴 ) ) ) | 
						
							| 8 |  | ltnr | ⊢ ( 𝐴  ∈  ℝ  →  ¬  𝐴  <  𝐴 ) | 
						
							| 9 | 8 | pm2.21d | ⊢ ( 𝐴  ∈  ℝ  →  ( 𝐴  <  𝐴  →  𝐴  =  0 ) ) | 
						
							| 10 | 9 | com12 | ⊢ ( 𝐴  <  𝐴  →  ( 𝐴  ∈  ℝ  →  𝐴  =  0 ) ) | 
						
							| 11 | 10 | imim2i | ⊢ ( ( 0  <  𝐴  →  𝐴  <  𝐴 )  →  ( 0  <  𝐴  →  ( 𝐴  ∈  ℝ  →  𝐴  =  0 ) ) ) | 
						
							| 12 | 11 | com13 | ⊢ ( 𝐴  ∈  ℝ  →  ( 0  <  𝐴  →  ( ( 0  <  𝐴  →  𝐴  <  𝐴 )  →  𝐴  =  0 ) ) ) | 
						
							| 13 | 7 12 | syl5d | ⊢ ( 𝐴  ∈  ℝ  →  ( 0  <  𝐴  →  ( ∀ 𝑥  ∈  ℝ ( 0  <  𝑥  →  𝐴  <  𝑥 )  →  𝐴  =  0 ) ) ) | 
						
							| 14 |  | ax-1 | ⊢ ( 𝐴  =  0  →  ( ∀ 𝑥  ∈  ℝ ( 0  <  𝑥  →  𝐴  <  𝑥 )  →  𝐴  =  0 ) ) | 
						
							| 15 | 14 | eqcoms | ⊢ ( 0  =  𝐴  →  ( ∀ 𝑥  ∈  ℝ ( 0  <  𝑥  →  𝐴  <  𝑥 )  →  𝐴  =  0 ) ) | 
						
							| 16 | 15 | a1i | ⊢ ( 𝐴  ∈  ℝ  →  ( 0  =  𝐴  →  ( ∀ 𝑥  ∈  ℝ ( 0  <  𝑥  →  𝐴  <  𝑥 )  →  𝐴  =  0 ) ) ) | 
						
							| 17 | 13 16 | jaod | ⊢ ( 𝐴  ∈  ℝ  →  ( ( 0  <  𝐴  ∨  0  =  𝐴 )  →  ( ∀ 𝑥  ∈  ℝ ( 0  <  𝑥  →  𝐴  <  𝑥 )  →  𝐴  =  0 ) ) ) | 
						
							| 18 | 3 17 | sylbid | ⊢ ( 𝐴  ∈  ℝ  →  ( 0  ≤  𝐴  →  ( ∀ 𝑥  ∈  ℝ ( 0  <  𝑥  →  𝐴  <  𝑥 )  →  𝐴  =  0 ) ) ) | 
						
							| 19 | 18 | 3imp | ⊢ ( ( 𝐴  ∈  ℝ  ∧  0  ≤  𝐴  ∧  ∀ 𝑥  ∈  ℝ ( 0  <  𝑥  →  𝐴  <  𝑥 ) )  →  𝐴  =  0 ) |