Metamath Proof Explorer


Theorem squeeze0

Description: If a nonnegative number is less than any positive number, it is zero. (Contributed by NM, 11-Feb-2006)

Ref Expression
Assertion squeeze0 A0Ax0<xA<xA=0

Proof

Step Hyp Ref Expression
1 0re 0
2 leloe 0A0A0<A0=A
3 1 2 mpan A0A0<A0=A
4 breq2 x=A0<x0<A
5 breq2 x=AA<xA<A
6 4 5 imbi12d x=A0<xA<x0<AA<A
7 6 rspcv Ax0<xA<x0<AA<A
8 ltnr A¬A<A
9 8 pm2.21d AA<AA=0
10 9 com12 A<AAA=0
11 10 imim2i 0<AA<A0<AAA=0
12 11 com13 A0<A0<AA<AA=0
13 7 12 syl5d A0<Ax0<xA<xA=0
14 ax-1 A=0x0<xA<xA=0
15 14 eqcoms 0=Ax0<xA<xA=0
16 15 a1i A0=Ax0<xA<xA=0
17 13 16 jaod A0<A0=Ax0<xA<xA=0
18 3 17 sylbid A0Ax0<xA<xA=0
19 18 3imp A0Ax0<xA<xA=0