| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simpr |
|- ( ( F e. oField /\ ( F |`s A ) e. Field ) -> ( F |`s A ) e. Field ) |
| 2 |
|
isofld |
|- ( F e. oField <-> ( F e. Field /\ F e. oRing ) ) |
| 3 |
2
|
simprbi |
|- ( F e. oField -> F e. oRing ) |
| 4 |
3
|
adantr |
|- ( ( F e. oField /\ ( F |`s A ) e. Field ) -> F e. oRing ) |
| 5 |
|
isfld |
|- ( ( F |`s A ) e. Field <-> ( ( F |`s A ) e. DivRing /\ ( F |`s A ) e. CRing ) ) |
| 6 |
5
|
simprbi |
|- ( ( F |`s A ) e. Field -> ( F |`s A ) e. CRing ) |
| 7 |
|
crngring |
|- ( ( F |`s A ) e. CRing -> ( F |`s A ) e. Ring ) |
| 8 |
1 6 7
|
3syl |
|- ( ( F e. oField /\ ( F |`s A ) e. Field ) -> ( F |`s A ) e. Ring ) |
| 9 |
|
suborng |
|- ( ( F e. oRing /\ ( F |`s A ) e. Ring ) -> ( F |`s A ) e. oRing ) |
| 10 |
4 8 9
|
syl2anc |
|- ( ( F e. oField /\ ( F |`s A ) e. Field ) -> ( F |`s A ) e. oRing ) |
| 11 |
|
isofld |
|- ( ( F |`s A ) e. oField <-> ( ( F |`s A ) e. Field /\ ( F |`s A ) e. oRing ) ) |
| 12 |
1 10 11
|
sylanbrc |
|- ( ( F e. oField /\ ( F |`s A ) e. Field ) -> ( F |`s A ) e. oField ) |