| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simpr |
|- ( ( R e. oRing /\ ( R |`s A ) e. Ring ) -> ( R |`s A ) e. Ring ) |
| 2 |
|
ringgrp |
|- ( ( R |`s A ) e. Ring -> ( R |`s A ) e. Grp ) |
| 3 |
2
|
adantl |
|- ( ( R e. oRing /\ ( R |`s A ) e. Ring ) -> ( R |`s A ) e. Grp ) |
| 4 |
|
orngogrp |
|- ( R e. oRing -> R e. oGrp ) |
| 5 |
|
isogrp |
|- ( R e. oGrp <-> ( R e. Grp /\ R e. oMnd ) ) |
| 6 |
5
|
simprbi |
|- ( R e. oGrp -> R e. oMnd ) |
| 7 |
4 6
|
syl |
|- ( R e. oRing -> R e. oMnd ) |
| 8 |
|
ringmnd |
|- ( ( R |`s A ) e. Ring -> ( R |`s A ) e. Mnd ) |
| 9 |
|
submomnd |
|- ( ( R e. oMnd /\ ( R |`s A ) e. Mnd ) -> ( R |`s A ) e. oMnd ) |
| 10 |
7 8 9
|
syl2an |
|- ( ( R e. oRing /\ ( R |`s A ) e. Ring ) -> ( R |`s A ) e. oMnd ) |
| 11 |
|
isogrp |
|- ( ( R |`s A ) e. oGrp <-> ( ( R |`s A ) e. Grp /\ ( R |`s A ) e. oMnd ) ) |
| 12 |
3 10 11
|
sylanbrc |
|- ( ( R e. oRing /\ ( R |`s A ) e. Ring ) -> ( R |`s A ) e. oGrp ) |
| 13 |
|
simp-4l |
|- ( ( ( ( ( R e. oRing /\ ( R |`s A ) e. Ring ) /\ a e. ( Base ` ( R |`s A ) ) ) /\ b e. ( Base ` ( R |`s A ) ) ) /\ ( ( 0g ` ( R |`s A ) ) ( le ` ( R |`s A ) ) a /\ ( 0g ` ( R |`s A ) ) ( le ` ( R |`s A ) ) b ) ) -> R e. oRing ) |
| 14 |
|
reldmress |
|- Rel dom |`s |
| 15 |
14
|
ovprc2 |
|- ( -. A e. _V -> ( R |`s A ) = (/) ) |
| 16 |
15
|
fveq2d |
|- ( -. A e. _V -> ( Base ` ( R |`s A ) ) = ( Base ` (/) ) ) |
| 17 |
16
|
adantl |
|- ( ( ( R e. oRing /\ ( R |`s A ) e. Ring ) /\ -. A e. _V ) -> ( Base ` ( R |`s A ) ) = ( Base ` (/) ) ) |
| 18 |
|
base0 |
|- (/) = ( Base ` (/) ) |
| 19 |
17 18
|
eqtr4di |
|- ( ( ( R e. oRing /\ ( R |`s A ) e. Ring ) /\ -. A e. _V ) -> ( Base ` ( R |`s A ) ) = (/) ) |
| 20 |
|
eqid |
|- ( Base ` ( R |`s A ) ) = ( Base ` ( R |`s A ) ) |
| 21 |
|
eqid |
|- ( 1r ` ( R |`s A ) ) = ( 1r ` ( R |`s A ) ) |
| 22 |
20 21
|
ringidcl |
|- ( ( R |`s A ) e. Ring -> ( 1r ` ( R |`s A ) ) e. ( Base ` ( R |`s A ) ) ) |
| 23 |
22
|
ne0d |
|- ( ( R |`s A ) e. Ring -> ( Base ` ( R |`s A ) ) =/= (/) ) |
| 24 |
23
|
ad2antlr |
|- ( ( ( R e. oRing /\ ( R |`s A ) e. Ring ) /\ -. A e. _V ) -> ( Base ` ( R |`s A ) ) =/= (/) ) |
| 25 |
24
|
neneqd |
|- ( ( ( R e. oRing /\ ( R |`s A ) e. Ring ) /\ -. A e. _V ) -> -. ( Base ` ( R |`s A ) ) = (/) ) |
| 26 |
19 25
|
condan |
|- ( ( R e. oRing /\ ( R |`s A ) e. Ring ) -> A e. _V ) |
| 27 |
|
eqid |
|- ( R |`s A ) = ( R |`s A ) |
| 28 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
| 29 |
27 28
|
ressbas |
|- ( A e. _V -> ( A i^i ( Base ` R ) ) = ( Base ` ( R |`s A ) ) ) |
| 30 |
|
inss2 |
|- ( A i^i ( Base ` R ) ) C_ ( Base ` R ) |
| 31 |
29 30
|
eqsstrrdi |
|- ( A e. _V -> ( Base ` ( R |`s A ) ) C_ ( Base ` R ) ) |
| 32 |
26 31
|
syl |
|- ( ( R e. oRing /\ ( R |`s A ) e. Ring ) -> ( Base ` ( R |`s A ) ) C_ ( Base ` R ) ) |
| 33 |
32
|
ad3antrrr |
|- ( ( ( ( ( R e. oRing /\ ( R |`s A ) e. Ring ) /\ a e. ( Base ` ( R |`s A ) ) ) /\ b e. ( Base ` ( R |`s A ) ) ) /\ ( ( 0g ` ( R |`s A ) ) ( le ` ( R |`s A ) ) a /\ ( 0g ` ( R |`s A ) ) ( le ` ( R |`s A ) ) b ) ) -> ( Base ` ( R |`s A ) ) C_ ( Base ` R ) ) |
| 34 |
|
simpllr |
|- ( ( ( ( ( R e. oRing /\ ( R |`s A ) e. Ring ) /\ a e. ( Base ` ( R |`s A ) ) ) /\ b e. ( Base ` ( R |`s A ) ) ) /\ ( ( 0g ` ( R |`s A ) ) ( le ` ( R |`s A ) ) a /\ ( 0g ` ( R |`s A ) ) ( le ` ( R |`s A ) ) b ) ) -> a e. ( Base ` ( R |`s A ) ) ) |
| 35 |
33 34
|
sseldd |
|- ( ( ( ( ( R e. oRing /\ ( R |`s A ) e. Ring ) /\ a e. ( Base ` ( R |`s A ) ) ) /\ b e. ( Base ` ( R |`s A ) ) ) /\ ( ( 0g ` ( R |`s A ) ) ( le ` ( R |`s A ) ) a /\ ( 0g ` ( R |`s A ) ) ( le ` ( R |`s A ) ) b ) ) -> a e. ( Base ` R ) ) |
| 36 |
|
simprl |
|- ( ( ( ( ( R e. oRing /\ ( R |`s A ) e. Ring ) /\ a e. ( Base ` ( R |`s A ) ) ) /\ b e. ( Base ` ( R |`s A ) ) ) /\ ( ( 0g ` ( R |`s A ) ) ( le ` ( R |`s A ) ) a /\ ( 0g ` ( R |`s A ) ) ( le ` ( R |`s A ) ) b ) ) -> ( 0g ` ( R |`s A ) ) ( le ` ( R |`s A ) ) a ) |
| 37 |
|
orngring |
|- ( R e. oRing -> R e. Ring ) |
| 38 |
|
ringgrp |
|- ( R e. Ring -> R e. Grp ) |
| 39 |
37 38
|
syl |
|- ( R e. oRing -> R e. Grp ) |
| 40 |
39
|
adantr |
|- ( ( R e. oRing /\ ( R |`s A ) e. Ring ) -> R e. Grp ) |
| 41 |
28
|
ressinbas |
|- ( A e. _V -> ( R |`s A ) = ( R |`s ( A i^i ( Base ` R ) ) ) ) |
| 42 |
29
|
oveq2d |
|- ( A e. _V -> ( R |`s ( A i^i ( Base ` R ) ) ) = ( R |`s ( Base ` ( R |`s A ) ) ) ) |
| 43 |
41 42
|
eqtrd |
|- ( A e. _V -> ( R |`s A ) = ( R |`s ( Base ` ( R |`s A ) ) ) ) |
| 44 |
26 43
|
syl |
|- ( ( R e. oRing /\ ( R |`s A ) e. Ring ) -> ( R |`s A ) = ( R |`s ( Base ` ( R |`s A ) ) ) ) |
| 45 |
44 3
|
eqeltrrd |
|- ( ( R e. oRing /\ ( R |`s A ) e. Ring ) -> ( R |`s ( Base ` ( R |`s A ) ) ) e. Grp ) |
| 46 |
28
|
issubg |
|- ( ( Base ` ( R |`s A ) ) e. ( SubGrp ` R ) <-> ( R e. Grp /\ ( Base ` ( R |`s A ) ) C_ ( Base ` R ) /\ ( R |`s ( Base ` ( R |`s A ) ) ) e. Grp ) ) |
| 47 |
40 32 45 46
|
syl3anbrc |
|- ( ( R e. oRing /\ ( R |`s A ) e. Ring ) -> ( Base ` ( R |`s A ) ) e. ( SubGrp ` R ) ) |
| 48 |
|
eqid |
|- ( R |`s ( Base ` ( R |`s A ) ) ) = ( R |`s ( Base ` ( R |`s A ) ) ) |
| 49 |
|
eqid |
|- ( 0g ` R ) = ( 0g ` R ) |
| 50 |
48 49
|
subg0 |
|- ( ( Base ` ( R |`s A ) ) e. ( SubGrp ` R ) -> ( 0g ` R ) = ( 0g ` ( R |`s ( Base ` ( R |`s A ) ) ) ) ) |
| 51 |
47 50
|
syl |
|- ( ( R e. oRing /\ ( R |`s A ) e. Ring ) -> ( 0g ` R ) = ( 0g ` ( R |`s ( Base ` ( R |`s A ) ) ) ) ) |
| 52 |
44
|
fveq2d |
|- ( ( R e. oRing /\ ( R |`s A ) e. Ring ) -> ( 0g ` ( R |`s A ) ) = ( 0g ` ( R |`s ( Base ` ( R |`s A ) ) ) ) ) |
| 53 |
51 52
|
eqtr4d |
|- ( ( R e. oRing /\ ( R |`s A ) e. Ring ) -> ( 0g ` R ) = ( 0g ` ( R |`s A ) ) ) |
| 54 |
53
|
ad2antrr |
|- ( ( ( ( R e. oRing /\ ( R |`s A ) e. Ring ) /\ a e. ( Base ` ( R |`s A ) ) ) /\ b e. ( Base ` ( R |`s A ) ) ) -> ( 0g ` R ) = ( 0g ` ( R |`s A ) ) ) |
| 55 |
26
|
ad2antrr |
|- ( ( ( ( R e. oRing /\ ( R |`s A ) e. Ring ) /\ a e. ( Base ` ( R |`s A ) ) ) /\ b e. ( Base ` ( R |`s A ) ) ) -> A e. _V ) |
| 56 |
|
eqid |
|- ( le ` R ) = ( le ` R ) |
| 57 |
27 56
|
ressle |
|- ( A e. _V -> ( le ` R ) = ( le ` ( R |`s A ) ) ) |
| 58 |
55 57
|
syl |
|- ( ( ( ( R e. oRing /\ ( R |`s A ) e. Ring ) /\ a e. ( Base ` ( R |`s A ) ) ) /\ b e. ( Base ` ( R |`s A ) ) ) -> ( le ` R ) = ( le ` ( R |`s A ) ) ) |
| 59 |
|
eqidd |
|- ( ( ( ( R e. oRing /\ ( R |`s A ) e. Ring ) /\ a e. ( Base ` ( R |`s A ) ) ) /\ b e. ( Base ` ( R |`s A ) ) ) -> a = a ) |
| 60 |
54 58 59
|
breq123d |
|- ( ( ( ( R e. oRing /\ ( R |`s A ) e. Ring ) /\ a e. ( Base ` ( R |`s A ) ) ) /\ b e. ( Base ` ( R |`s A ) ) ) -> ( ( 0g ` R ) ( le ` R ) a <-> ( 0g ` ( R |`s A ) ) ( le ` ( R |`s A ) ) a ) ) |
| 61 |
60
|
adantr |
|- ( ( ( ( ( R e. oRing /\ ( R |`s A ) e. Ring ) /\ a e. ( Base ` ( R |`s A ) ) ) /\ b e. ( Base ` ( R |`s A ) ) ) /\ ( ( 0g ` ( R |`s A ) ) ( le ` ( R |`s A ) ) a /\ ( 0g ` ( R |`s A ) ) ( le ` ( R |`s A ) ) b ) ) -> ( ( 0g ` R ) ( le ` R ) a <-> ( 0g ` ( R |`s A ) ) ( le ` ( R |`s A ) ) a ) ) |
| 62 |
36 61
|
mpbird |
|- ( ( ( ( ( R e. oRing /\ ( R |`s A ) e. Ring ) /\ a e. ( Base ` ( R |`s A ) ) ) /\ b e. ( Base ` ( R |`s A ) ) ) /\ ( ( 0g ` ( R |`s A ) ) ( le ` ( R |`s A ) ) a /\ ( 0g ` ( R |`s A ) ) ( le ` ( R |`s A ) ) b ) ) -> ( 0g ` R ) ( le ` R ) a ) |
| 63 |
|
simplr |
|- ( ( ( ( ( R e. oRing /\ ( R |`s A ) e. Ring ) /\ a e. ( Base ` ( R |`s A ) ) ) /\ b e. ( Base ` ( R |`s A ) ) ) /\ ( ( 0g ` ( R |`s A ) ) ( le ` ( R |`s A ) ) a /\ ( 0g ` ( R |`s A ) ) ( le ` ( R |`s A ) ) b ) ) -> b e. ( Base ` ( R |`s A ) ) ) |
| 64 |
33 63
|
sseldd |
|- ( ( ( ( ( R e. oRing /\ ( R |`s A ) e. Ring ) /\ a e. ( Base ` ( R |`s A ) ) ) /\ b e. ( Base ` ( R |`s A ) ) ) /\ ( ( 0g ` ( R |`s A ) ) ( le ` ( R |`s A ) ) a /\ ( 0g ` ( R |`s A ) ) ( le ` ( R |`s A ) ) b ) ) -> b e. ( Base ` R ) ) |
| 65 |
|
simprr |
|- ( ( ( ( ( R e. oRing /\ ( R |`s A ) e. Ring ) /\ a e. ( Base ` ( R |`s A ) ) ) /\ b e. ( Base ` ( R |`s A ) ) ) /\ ( ( 0g ` ( R |`s A ) ) ( le ` ( R |`s A ) ) a /\ ( 0g ` ( R |`s A ) ) ( le ` ( R |`s A ) ) b ) ) -> ( 0g ` ( R |`s A ) ) ( le ` ( R |`s A ) ) b ) |
| 66 |
|
eqidd |
|- ( ( ( ( R e. oRing /\ ( R |`s A ) e. Ring ) /\ a e. ( Base ` ( R |`s A ) ) ) /\ b e. ( Base ` ( R |`s A ) ) ) -> b = b ) |
| 67 |
54 58 66
|
breq123d |
|- ( ( ( ( R e. oRing /\ ( R |`s A ) e. Ring ) /\ a e. ( Base ` ( R |`s A ) ) ) /\ b e. ( Base ` ( R |`s A ) ) ) -> ( ( 0g ` R ) ( le ` R ) b <-> ( 0g ` ( R |`s A ) ) ( le ` ( R |`s A ) ) b ) ) |
| 68 |
67
|
adantr |
|- ( ( ( ( ( R e. oRing /\ ( R |`s A ) e. Ring ) /\ a e. ( Base ` ( R |`s A ) ) ) /\ b e. ( Base ` ( R |`s A ) ) ) /\ ( ( 0g ` ( R |`s A ) ) ( le ` ( R |`s A ) ) a /\ ( 0g ` ( R |`s A ) ) ( le ` ( R |`s A ) ) b ) ) -> ( ( 0g ` R ) ( le ` R ) b <-> ( 0g ` ( R |`s A ) ) ( le ` ( R |`s A ) ) b ) ) |
| 69 |
65 68
|
mpbird |
|- ( ( ( ( ( R e. oRing /\ ( R |`s A ) e. Ring ) /\ a e. ( Base ` ( R |`s A ) ) ) /\ b e. ( Base ` ( R |`s A ) ) ) /\ ( ( 0g ` ( R |`s A ) ) ( le ` ( R |`s A ) ) a /\ ( 0g ` ( R |`s A ) ) ( le ` ( R |`s A ) ) b ) ) -> ( 0g ` R ) ( le ` R ) b ) |
| 70 |
|
eqid |
|- ( .r ` R ) = ( .r ` R ) |
| 71 |
28 56 49 70
|
orngmul |
|- ( ( R e. oRing /\ ( a e. ( Base ` R ) /\ ( 0g ` R ) ( le ` R ) a ) /\ ( b e. ( Base ` R ) /\ ( 0g ` R ) ( le ` R ) b ) ) -> ( 0g ` R ) ( le ` R ) ( a ( .r ` R ) b ) ) |
| 72 |
13 35 62 64 69 71
|
syl122anc |
|- ( ( ( ( ( R e. oRing /\ ( R |`s A ) e. Ring ) /\ a e. ( Base ` ( R |`s A ) ) ) /\ b e. ( Base ` ( R |`s A ) ) ) /\ ( ( 0g ` ( R |`s A ) ) ( le ` ( R |`s A ) ) a /\ ( 0g ` ( R |`s A ) ) ( le ` ( R |`s A ) ) b ) ) -> ( 0g ` R ) ( le ` R ) ( a ( .r ` R ) b ) ) |
| 73 |
54
|
adantr |
|- ( ( ( ( ( R e. oRing /\ ( R |`s A ) e. Ring ) /\ a e. ( Base ` ( R |`s A ) ) ) /\ b e. ( Base ` ( R |`s A ) ) ) /\ ( ( 0g ` ( R |`s A ) ) ( le ` ( R |`s A ) ) a /\ ( 0g ` ( R |`s A ) ) ( le ` ( R |`s A ) ) b ) ) -> ( 0g ` R ) = ( 0g ` ( R |`s A ) ) ) |
| 74 |
58
|
adantr |
|- ( ( ( ( ( R e. oRing /\ ( R |`s A ) e. Ring ) /\ a e. ( Base ` ( R |`s A ) ) ) /\ b e. ( Base ` ( R |`s A ) ) ) /\ ( ( 0g ` ( R |`s A ) ) ( le ` ( R |`s A ) ) a /\ ( 0g ` ( R |`s A ) ) ( le ` ( R |`s A ) ) b ) ) -> ( le ` R ) = ( le ` ( R |`s A ) ) ) |
| 75 |
55
|
adantr |
|- ( ( ( ( ( R e. oRing /\ ( R |`s A ) e. Ring ) /\ a e. ( Base ` ( R |`s A ) ) ) /\ b e. ( Base ` ( R |`s A ) ) ) /\ ( ( 0g ` ( R |`s A ) ) ( le ` ( R |`s A ) ) a /\ ( 0g ` ( R |`s A ) ) ( le ` ( R |`s A ) ) b ) ) -> A e. _V ) |
| 76 |
27 70
|
ressmulr |
|- ( A e. _V -> ( .r ` R ) = ( .r ` ( R |`s A ) ) ) |
| 77 |
75 76
|
syl |
|- ( ( ( ( ( R e. oRing /\ ( R |`s A ) e. Ring ) /\ a e. ( Base ` ( R |`s A ) ) ) /\ b e. ( Base ` ( R |`s A ) ) ) /\ ( ( 0g ` ( R |`s A ) ) ( le ` ( R |`s A ) ) a /\ ( 0g ` ( R |`s A ) ) ( le ` ( R |`s A ) ) b ) ) -> ( .r ` R ) = ( .r ` ( R |`s A ) ) ) |
| 78 |
77
|
oveqd |
|- ( ( ( ( ( R e. oRing /\ ( R |`s A ) e. Ring ) /\ a e. ( Base ` ( R |`s A ) ) ) /\ b e. ( Base ` ( R |`s A ) ) ) /\ ( ( 0g ` ( R |`s A ) ) ( le ` ( R |`s A ) ) a /\ ( 0g ` ( R |`s A ) ) ( le ` ( R |`s A ) ) b ) ) -> ( a ( .r ` R ) b ) = ( a ( .r ` ( R |`s A ) ) b ) ) |
| 79 |
73 74 78
|
breq123d |
|- ( ( ( ( ( R e. oRing /\ ( R |`s A ) e. Ring ) /\ a e. ( Base ` ( R |`s A ) ) ) /\ b e. ( Base ` ( R |`s A ) ) ) /\ ( ( 0g ` ( R |`s A ) ) ( le ` ( R |`s A ) ) a /\ ( 0g ` ( R |`s A ) ) ( le ` ( R |`s A ) ) b ) ) -> ( ( 0g ` R ) ( le ` R ) ( a ( .r ` R ) b ) <-> ( 0g ` ( R |`s A ) ) ( le ` ( R |`s A ) ) ( a ( .r ` ( R |`s A ) ) b ) ) ) |
| 80 |
72 79
|
mpbid |
|- ( ( ( ( ( R e. oRing /\ ( R |`s A ) e. Ring ) /\ a e. ( Base ` ( R |`s A ) ) ) /\ b e. ( Base ` ( R |`s A ) ) ) /\ ( ( 0g ` ( R |`s A ) ) ( le ` ( R |`s A ) ) a /\ ( 0g ` ( R |`s A ) ) ( le ` ( R |`s A ) ) b ) ) -> ( 0g ` ( R |`s A ) ) ( le ` ( R |`s A ) ) ( a ( .r ` ( R |`s A ) ) b ) ) |
| 81 |
80
|
ex |
|- ( ( ( ( R e. oRing /\ ( R |`s A ) e. Ring ) /\ a e. ( Base ` ( R |`s A ) ) ) /\ b e. ( Base ` ( R |`s A ) ) ) -> ( ( ( 0g ` ( R |`s A ) ) ( le ` ( R |`s A ) ) a /\ ( 0g ` ( R |`s A ) ) ( le ` ( R |`s A ) ) b ) -> ( 0g ` ( R |`s A ) ) ( le ` ( R |`s A ) ) ( a ( .r ` ( R |`s A ) ) b ) ) ) |
| 82 |
81
|
anasss |
|- ( ( ( R e. oRing /\ ( R |`s A ) e. Ring ) /\ ( a e. ( Base ` ( R |`s A ) ) /\ b e. ( Base ` ( R |`s A ) ) ) ) -> ( ( ( 0g ` ( R |`s A ) ) ( le ` ( R |`s A ) ) a /\ ( 0g ` ( R |`s A ) ) ( le ` ( R |`s A ) ) b ) -> ( 0g ` ( R |`s A ) ) ( le ` ( R |`s A ) ) ( a ( .r ` ( R |`s A ) ) b ) ) ) |
| 83 |
82
|
ralrimivva |
|- ( ( R e. oRing /\ ( R |`s A ) e. Ring ) -> A. a e. ( Base ` ( R |`s A ) ) A. b e. ( Base ` ( R |`s A ) ) ( ( ( 0g ` ( R |`s A ) ) ( le ` ( R |`s A ) ) a /\ ( 0g ` ( R |`s A ) ) ( le ` ( R |`s A ) ) b ) -> ( 0g ` ( R |`s A ) ) ( le ` ( R |`s A ) ) ( a ( .r ` ( R |`s A ) ) b ) ) ) |
| 84 |
|
eqid |
|- ( 0g ` ( R |`s A ) ) = ( 0g ` ( R |`s A ) ) |
| 85 |
|
eqid |
|- ( .r ` ( R |`s A ) ) = ( .r ` ( R |`s A ) ) |
| 86 |
|
eqid |
|- ( le ` ( R |`s A ) ) = ( le ` ( R |`s A ) ) |
| 87 |
20 84 85 86
|
isorng |
|- ( ( R |`s A ) e. oRing <-> ( ( R |`s A ) e. Ring /\ ( R |`s A ) e. oGrp /\ A. a e. ( Base ` ( R |`s A ) ) A. b e. ( Base ` ( R |`s A ) ) ( ( ( 0g ` ( R |`s A ) ) ( le ` ( R |`s A ) ) a /\ ( 0g ` ( R |`s A ) ) ( le ` ( R |`s A ) ) b ) -> ( 0g ` ( R |`s A ) ) ( le ` ( R |`s A ) ) ( a ( .r ` ( R |`s A ) ) b ) ) ) ) |
| 88 |
1 12 83 87
|
syl3anbrc |
|- ( ( R e. oRing /\ ( R |`s A ) e. Ring ) -> ( R |`s A ) e. oRing ) |