| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simpr |
⊢ ( ( 𝐹 ∈ oField ∧ ( 𝐹 ↾s 𝐴 ) ∈ Field ) → ( 𝐹 ↾s 𝐴 ) ∈ Field ) |
| 2 |
|
isofld |
⊢ ( 𝐹 ∈ oField ↔ ( 𝐹 ∈ Field ∧ 𝐹 ∈ oRing ) ) |
| 3 |
2
|
simprbi |
⊢ ( 𝐹 ∈ oField → 𝐹 ∈ oRing ) |
| 4 |
3
|
adantr |
⊢ ( ( 𝐹 ∈ oField ∧ ( 𝐹 ↾s 𝐴 ) ∈ Field ) → 𝐹 ∈ oRing ) |
| 5 |
|
isfld |
⊢ ( ( 𝐹 ↾s 𝐴 ) ∈ Field ↔ ( ( 𝐹 ↾s 𝐴 ) ∈ DivRing ∧ ( 𝐹 ↾s 𝐴 ) ∈ CRing ) ) |
| 6 |
5
|
simprbi |
⊢ ( ( 𝐹 ↾s 𝐴 ) ∈ Field → ( 𝐹 ↾s 𝐴 ) ∈ CRing ) |
| 7 |
|
crngring |
⊢ ( ( 𝐹 ↾s 𝐴 ) ∈ CRing → ( 𝐹 ↾s 𝐴 ) ∈ Ring ) |
| 8 |
1 6 7
|
3syl |
⊢ ( ( 𝐹 ∈ oField ∧ ( 𝐹 ↾s 𝐴 ) ∈ Field ) → ( 𝐹 ↾s 𝐴 ) ∈ Ring ) |
| 9 |
|
suborng |
⊢ ( ( 𝐹 ∈ oRing ∧ ( 𝐹 ↾s 𝐴 ) ∈ Ring ) → ( 𝐹 ↾s 𝐴 ) ∈ oRing ) |
| 10 |
4 8 9
|
syl2anc |
⊢ ( ( 𝐹 ∈ oField ∧ ( 𝐹 ↾s 𝐴 ) ∈ Field ) → ( 𝐹 ↾s 𝐴 ) ∈ oRing ) |
| 11 |
|
isofld |
⊢ ( ( 𝐹 ↾s 𝐴 ) ∈ oField ↔ ( ( 𝐹 ↾s 𝐴 ) ∈ Field ∧ ( 𝐹 ↾s 𝐴 ) ∈ oRing ) ) |
| 12 |
1 10 11
|
sylanbrc |
⊢ ( ( 𝐹 ∈ oField ∧ ( 𝐹 ↾s 𝐴 ) ∈ Field ) → ( 𝐹 ↾s 𝐴 ) ∈ oField ) |