Metamath Proof Explorer


Theorem subofld

Description: Every subfield of an ordered field is also an ordered field. (Contributed by Thierry Arnoux, 21-Jan-2018)

Ref Expression
Assertion subofld FoFieldF𝑠AFieldF𝑠AoField

Proof

Step Hyp Ref Expression
1 simpr FoFieldF𝑠AFieldF𝑠AField
2 isofld FoFieldFFieldFoRing
3 2 simprbi FoFieldFoRing
4 3 adantr FoFieldF𝑠AFieldFoRing
5 isfld F𝑠AFieldF𝑠ADivRingF𝑠ACRing
6 5 simprbi F𝑠AFieldF𝑠ACRing
7 crngring F𝑠ACRingF𝑠ARing
8 1 6 7 3syl FoFieldF𝑠AFieldF𝑠ARing
9 suborng FoRingF𝑠ARingF𝑠AoRing
10 4 8 9 syl2anc FoFieldF𝑠AFieldF𝑠AoRing
11 isofld F𝑠AoFieldF𝑠AFieldF𝑠AoRing
12 1 10 11 sylanbrc FoFieldF𝑠AFieldF𝑠AoField