Description: Every subfield of an ordered field is also an ordered field. (Contributed by Thierry Arnoux, 21-Jan-2018)
Ref | Expression | ||
---|---|---|---|
Assertion | subofld | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr | |
|
2 | isofld | |
|
3 | 2 | simprbi | |
4 | 3 | adantr | |
5 | isfld | |
|
6 | 5 | simprbi | |
7 | crngring | |
|
8 | 1 6 7 | 3syl | |
9 | suborng | |
|
10 | 4 8 9 | syl2anc | |
11 | isofld | |
|
12 | 1 10 11 | sylanbrc | |