Step |
Hyp |
Ref |
Expression |
1 |
|
supmo.1 |
|- ( ph -> R Or A ) |
2 |
|
supcl.2 |
|- ( ph -> E. x e. A ( A. y e. B -. x R y /\ A. y e. A ( y R x -> E. z e. B y R z ) ) ) |
3 |
|
suplub2.3 |
|- ( ph -> B C_ A ) |
4 |
1 2
|
suplub |
|- ( ph -> ( ( C e. A /\ C R sup ( B , A , R ) ) -> E. z e. B C R z ) ) |
5 |
4
|
expdimp |
|- ( ( ph /\ C e. A ) -> ( C R sup ( B , A , R ) -> E. z e. B C R z ) ) |
6 |
|
breq2 |
|- ( z = w -> ( C R z <-> C R w ) ) |
7 |
6
|
cbvrexvw |
|- ( E. z e. B C R z <-> E. w e. B C R w ) |
8 |
|
breq2 |
|- ( sup ( B , A , R ) = w -> ( C R sup ( B , A , R ) <-> C R w ) ) |
9 |
8
|
biimprd |
|- ( sup ( B , A , R ) = w -> ( C R w -> C R sup ( B , A , R ) ) ) |
10 |
9
|
a1i |
|- ( ( ( ph /\ C e. A ) /\ w e. B ) -> ( sup ( B , A , R ) = w -> ( C R w -> C R sup ( B , A , R ) ) ) ) |
11 |
1
|
ad2antrr |
|- ( ( ( ph /\ C e. A ) /\ w e. B ) -> R Or A ) |
12 |
|
simplr |
|- ( ( ( ph /\ C e. A ) /\ w e. B ) -> C e. A ) |
13 |
3
|
adantr |
|- ( ( ph /\ C e. A ) -> B C_ A ) |
14 |
13
|
sselda |
|- ( ( ( ph /\ C e. A ) /\ w e. B ) -> w e. A ) |
15 |
1 2
|
supcl |
|- ( ph -> sup ( B , A , R ) e. A ) |
16 |
15
|
ad2antrr |
|- ( ( ( ph /\ C e. A ) /\ w e. B ) -> sup ( B , A , R ) e. A ) |
17 |
|
sotr |
|- ( ( R Or A /\ ( C e. A /\ w e. A /\ sup ( B , A , R ) e. A ) ) -> ( ( C R w /\ w R sup ( B , A , R ) ) -> C R sup ( B , A , R ) ) ) |
18 |
11 12 14 16 17
|
syl13anc |
|- ( ( ( ph /\ C e. A ) /\ w e. B ) -> ( ( C R w /\ w R sup ( B , A , R ) ) -> C R sup ( B , A , R ) ) ) |
19 |
18
|
expcomd |
|- ( ( ( ph /\ C e. A ) /\ w e. B ) -> ( w R sup ( B , A , R ) -> ( C R w -> C R sup ( B , A , R ) ) ) ) |
20 |
1 2
|
supub |
|- ( ph -> ( w e. B -> -. sup ( B , A , R ) R w ) ) |
21 |
20
|
adantr |
|- ( ( ph /\ C e. A ) -> ( w e. B -> -. sup ( B , A , R ) R w ) ) |
22 |
21
|
imp |
|- ( ( ( ph /\ C e. A ) /\ w e. B ) -> -. sup ( B , A , R ) R w ) |
23 |
|
sotric |
|- ( ( R Or A /\ ( sup ( B , A , R ) e. A /\ w e. A ) ) -> ( sup ( B , A , R ) R w <-> -. ( sup ( B , A , R ) = w \/ w R sup ( B , A , R ) ) ) ) |
24 |
11 16 14 23
|
syl12anc |
|- ( ( ( ph /\ C e. A ) /\ w e. B ) -> ( sup ( B , A , R ) R w <-> -. ( sup ( B , A , R ) = w \/ w R sup ( B , A , R ) ) ) ) |
25 |
24
|
con2bid |
|- ( ( ( ph /\ C e. A ) /\ w e. B ) -> ( ( sup ( B , A , R ) = w \/ w R sup ( B , A , R ) ) <-> -. sup ( B , A , R ) R w ) ) |
26 |
22 25
|
mpbird |
|- ( ( ( ph /\ C e. A ) /\ w e. B ) -> ( sup ( B , A , R ) = w \/ w R sup ( B , A , R ) ) ) |
27 |
10 19 26
|
mpjaod |
|- ( ( ( ph /\ C e. A ) /\ w e. B ) -> ( C R w -> C R sup ( B , A , R ) ) ) |
28 |
27
|
rexlimdva |
|- ( ( ph /\ C e. A ) -> ( E. w e. B C R w -> C R sup ( B , A , R ) ) ) |
29 |
7 28
|
syl5bi |
|- ( ( ph /\ C e. A ) -> ( E. z e. B C R z -> C R sup ( B , A , R ) ) ) |
30 |
5 29
|
impbid |
|- ( ( ph /\ C e. A ) -> ( C R sup ( B , A , R ) <-> E. z e. B C R z ) ) |