| Step |
Hyp |
Ref |
Expression |
| 1 |
|
swoer.1 |
|- R = ( ( X X. X ) \ ( .< u. `' .< ) ) |
| 2 |
|
swoer.2 |
|- ( ( ph /\ ( y e. X /\ z e. X ) ) -> ( y .< z -> -. z .< y ) ) |
| 3 |
|
swoer.3 |
|- ( ( ph /\ ( x e. X /\ y e. X /\ z e. X ) ) -> ( x .< y -> ( x .< z \/ z .< y ) ) ) |
| 4 |
|
swoord.4 |
|- ( ph -> B e. X ) |
| 5 |
|
swoord.5 |
|- ( ph -> C e. X ) |
| 6 |
|
swoord.6 |
|- ( ph -> A R B ) |
| 7 |
|
id |
|- ( ph -> ph ) |
| 8 |
|
difss |
|- ( ( X X. X ) \ ( .< u. `' .< ) ) C_ ( X X. X ) |
| 9 |
1 8
|
eqsstri |
|- R C_ ( X X. X ) |
| 10 |
9
|
ssbri |
|- ( A R B -> A ( X X. X ) B ) |
| 11 |
|
df-br |
|- ( A ( X X. X ) B <-> <. A , B >. e. ( X X. X ) ) |
| 12 |
|
opelxp1 |
|- ( <. A , B >. e. ( X X. X ) -> A e. X ) |
| 13 |
11 12
|
sylbi |
|- ( A ( X X. X ) B -> A e. X ) |
| 14 |
6 10 13
|
3syl |
|- ( ph -> A e. X ) |
| 15 |
3
|
swopolem |
|- ( ( ph /\ ( C e. X /\ A e. X /\ B e. X ) ) -> ( C .< A -> ( C .< B \/ B .< A ) ) ) |
| 16 |
7 5 14 4 15
|
syl13anc |
|- ( ph -> ( C .< A -> ( C .< B \/ B .< A ) ) ) |
| 17 |
|
idd |
|- ( ph -> ( C .< B -> C .< B ) ) |
| 18 |
1
|
brdifun |
|- ( ( A e. X /\ B e. X ) -> ( A R B <-> -. ( A .< B \/ B .< A ) ) ) |
| 19 |
14 4 18
|
syl2anc |
|- ( ph -> ( A R B <-> -. ( A .< B \/ B .< A ) ) ) |
| 20 |
6 19
|
mpbid |
|- ( ph -> -. ( A .< B \/ B .< A ) ) |
| 21 |
|
olc |
|- ( B .< A -> ( A .< B \/ B .< A ) ) |
| 22 |
20 21
|
nsyl |
|- ( ph -> -. B .< A ) |
| 23 |
22
|
pm2.21d |
|- ( ph -> ( B .< A -> C .< B ) ) |
| 24 |
17 23
|
jaod |
|- ( ph -> ( ( C .< B \/ B .< A ) -> C .< B ) ) |
| 25 |
16 24
|
syld |
|- ( ph -> ( C .< A -> C .< B ) ) |
| 26 |
3
|
swopolem |
|- ( ( ph /\ ( C e. X /\ B e. X /\ A e. X ) ) -> ( C .< B -> ( C .< A \/ A .< B ) ) ) |
| 27 |
7 5 4 14 26
|
syl13anc |
|- ( ph -> ( C .< B -> ( C .< A \/ A .< B ) ) ) |
| 28 |
|
idd |
|- ( ph -> ( C .< A -> C .< A ) ) |
| 29 |
|
orc |
|- ( A .< B -> ( A .< B \/ B .< A ) ) |
| 30 |
20 29
|
nsyl |
|- ( ph -> -. A .< B ) |
| 31 |
30
|
pm2.21d |
|- ( ph -> ( A .< B -> C .< A ) ) |
| 32 |
28 31
|
jaod |
|- ( ph -> ( ( C .< A \/ A .< B ) -> C .< A ) ) |
| 33 |
27 32
|
syld |
|- ( ph -> ( C .< B -> C .< A ) ) |
| 34 |
25 33
|
impbid |
|- ( ph -> ( C .< A <-> C .< B ) ) |