| Step |
Hyp |
Ref |
Expression |
| 1 |
|
swoer.1 |
⊢ 𝑅 = ( ( 𝑋 × 𝑋 ) ∖ ( < ∪ ◡ < ) ) |
| 2 |
|
swoer.2 |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → ( 𝑦 < 𝑧 → ¬ 𝑧 < 𝑦 ) ) |
| 3 |
|
swoer.3 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → ( 𝑥 < 𝑦 → ( 𝑥 < 𝑧 ∨ 𝑧 < 𝑦 ) ) ) |
| 4 |
|
swoord.4 |
⊢ ( 𝜑 → 𝐵 ∈ 𝑋 ) |
| 5 |
|
swoord.5 |
⊢ ( 𝜑 → 𝐶 ∈ 𝑋 ) |
| 6 |
|
swoord.6 |
⊢ ( 𝜑 → 𝐴 𝑅 𝐵 ) |
| 7 |
|
id |
⊢ ( 𝜑 → 𝜑 ) |
| 8 |
|
difss |
⊢ ( ( 𝑋 × 𝑋 ) ∖ ( < ∪ ◡ < ) ) ⊆ ( 𝑋 × 𝑋 ) |
| 9 |
1 8
|
eqsstri |
⊢ 𝑅 ⊆ ( 𝑋 × 𝑋 ) |
| 10 |
9
|
ssbri |
⊢ ( 𝐴 𝑅 𝐵 → 𝐴 ( 𝑋 × 𝑋 ) 𝐵 ) |
| 11 |
|
df-br |
⊢ ( 𝐴 ( 𝑋 × 𝑋 ) 𝐵 ↔ 〈 𝐴 , 𝐵 〉 ∈ ( 𝑋 × 𝑋 ) ) |
| 12 |
|
opelxp1 |
⊢ ( 〈 𝐴 , 𝐵 〉 ∈ ( 𝑋 × 𝑋 ) → 𝐴 ∈ 𝑋 ) |
| 13 |
11 12
|
sylbi |
⊢ ( 𝐴 ( 𝑋 × 𝑋 ) 𝐵 → 𝐴 ∈ 𝑋 ) |
| 14 |
6 10 13
|
3syl |
⊢ ( 𝜑 → 𝐴 ∈ 𝑋 ) |
| 15 |
3
|
swopolem |
⊢ ( ( 𝜑 ∧ ( 𝐶 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) → ( 𝐶 < 𝐴 → ( 𝐶 < 𝐵 ∨ 𝐵 < 𝐴 ) ) ) |
| 16 |
7 5 14 4 15
|
syl13anc |
⊢ ( 𝜑 → ( 𝐶 < 𝐴 → ( 𝐶 < 𝐵 ∨ 𝐵 < 𝐴 ) ) ) |
| 17 |
|
idd |
⊢ ( 𝜑 → ( 𝐶 < 𝐵 → 𝐶 < 𝐵 ) ) |
| 18 |
1
|
brdifun |
⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐴 𝑅 𝐵 ↔ ¬ ( 𝐴 < 𝐵 ∨ 𝐵 < 𝐴 ) ) ) |
| 19 |
14 4 18
|
syl2anc |
⊢ ( 𝜑 → ( 𝐴 𝑅 𝐵 ↔ ¬ ( 𝐴 < 𝐵 ∨ 𝐵 < 𝐴 ) ) ) |
| 20 |
6 19
|
mpbid |
⊢ ( 𝜑 → ¬ ( 𝐴 < 𝐵 ∨ 𝐵 < 𝐴 ) ) |
| 21 |
|
olc |
⊢ ( 𝐵 < 𝐴 → ( 𝐴 < 𝐵 ∨ 𝐵 < 𝐴 ) ) |
| 22 |
20 21
|
nsyl |
⊢ ( 𝜑 → ¬ 𝐵 < 𝐴 ) |
| 23 |
22
|
pm2.21d |
⊢ ( 𝜑 → ( 𝐵 < 𝐴 → 𝐶 < 𝐵 ) ) |
| 24 |
17 23
|
jaod |
⊢ ( 𝜑 → ( ( 𝐶 < 𝐵 ∨ 𝐵 < 𝐴 ) → 𝐶 < 𝐵 ) ) |
| 25 |
16 24
|
syld |
⊢ ( 𝜑 → ( 𝐶 < 𝐴 → 𝐶 < 𝐵 ) ) |
| 26 |
3
|
swopolem |
⊢ ( ( 𝜑 ∧ ( 𝐶 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ) → ( 𝐶 < 𝐵 → ( 𝐶 < 𝐴 ∨ 𝐴 < 𝐵 ) ) ) |
| 27 |
7 5 4 14 26
|
syl13anc |
⊢ ( 𝜑 → ( 𝐶 < 𝐵 → ( 𝐶 < 𝐴 ∨ 𝐴 < 𝐵 ) ) ) |
| 28 |
|
idd |
⊢ ( 𝜑 → ( 𝐶 < 𝐴 → 𝐶 < 𝐴 ) ) |
| 29 |
|
orc |
⊢ ( 𝐴 < 𝐵 → ( 𝐴 < 𝐵 ∨ 𝐵 < 𝐴 ) ) |
| 30 |
20 29
|
nsyl |
⊢ ( 𝜑 → ¬ 𝐴 < 𝐵 ) |
| 31 |
30
|
pm2.21d |
⊢ ( 𝜑 → ( 𝐴 < 𝐵 → 𝐶 < 𝐴 ) ) |
| 32 |
28 31
|
jaod |
⊢ ( 𝜑 → ( ( 𝐶 < 𝐴 ∨ 𝐴 < 𝐵 ) → 𝐶 < 𝐴 ) ) |
| 33 |
27 32
|
syld |
⊢ ( 𝜑 → ( 𝐶 < 𝐵 → 𝐶 < 𝐴 ) ) |
| 34 |
25 33
|
impbid |
⊢ ( 𝜑 → ( 𝐶 < 𝐴 ↔ 𝐶 < 𝐵 ) ) |