Metamath Proof Explorer


Theorem swoord2

Description: The incomparability equivalence relation is compatible with the original order. (Contributed by Mario Carneiro, 31-Dec-2014)

Ref Expression
Hypotheses swoer.1 𝑅 = ( ( 𝑋 × 𝑋 ) ∖ ( < < ) )
swoer.2 ( ( 𝜑 ∧ ( 𝑦𝑋𝑧𝑋 ) ) → ( 𝑦 < 𝑧 → ¬ 𝑧 < 𝑦 ) )
swoer.3 ( ( 𝜑 ∧ ( 𝑥𝑋𝑦𝑋𝑧𝑋 ) ) → ( 𝑥 < 𝑦 → ( 𝑥 < 𝑧𝑧 < 𝑦 ) ) )
swoord.4 ( 𝜑𝐵𝑋 )
swoord.5 ( 𝜑𝐶𝑋 )
swoord.6 ( 𝜑𝐴 𝑅 𝐵 )
Assertion swoord2 ( 𝜑 → ( 𝐶 < 𝐴𝐶 < 𝐵 ) )

Proof

Step Hyp Ref Expression
1 swoer.1 𝑅 = ( ( 𝑋 × 𝑋 ) ∖ ( < < ) )
2 swoer.2 ( ( 𝜑 ∧ ( 𝑦𝑋𝑧𝑋 ) ) → ( 𝑦 < 𝑧 → ¬ 𝑧 < 𝑦 ) )
3 swoer.3 ( ( 𝜑 ∧ ( 𝑥𝑋𝑦𝑋𝑧𝑋 ) ) → ( 𝑥 < 𝑦 → ( 𝑥 < 𝑧𝑧 < 𝑦 ) ) )
4 swoord.4 ( 𝜑𝐵𝑋 )
5 swoord.5 ( 𝜑𝐶𝑋 )
6 swoord.6 ( 𝜑𝐴 𝑅 𝐵 )
7 id ( 𝜑𝜑 )
8 difss ( ( 𝑋 × 𝑋 ) ∖ ( < < ) ) ⊆ ( 𝑋 × 𝑋 )
9 1 8 eqsstri 𝑅 ⊆ ( 𝑋 × 𝑋 )
10 9 ssbri ( 𝐴 𝑅 𝐵𝐴 ( 𝑋 × 𝑋 ) 𝐵 )
11 df-br ( 𝐴 ( 𝑋 × 𝑋 ) 𝐵 ↔ ⟨ 𝐴 , 𝐵 ⟩ ∈ ( 𝑋 × 𝑋 ) )
12 opelxp1 ( ⟨ 𝐴 , 𝐵 ⟩ ∈ ( 𝑋 × 𝑋 ) → 𝐴𝑋 )
13 11 12 sylbi ( 𝐴 ( 𝑋 × 𝑋 ) 𝐵𝐴𝑋 )
14 6 10 13 3syl ( 𝜑𝐴𝑋 )
15 3 swopolem ( ( 𝜑 ∧ ( 𝐶𝑋𝐴𝑋𝐵𝑋 ) ) → ( 𝐶 < 𝐴 → ( 𝐶 < 𝐵𝐵 < 𝐴 ) ) )
16 7 5 14 4 15 syl13anc ( 𝜑 → ( 𝐶 < 𝐴 → ( 𝐶 < 𝐵𝐵 < 𝐴 ) ) )
17 idd ( 𝜑 → ( 𝐶 < 𝐵𝐶 < 𝐵 ) )
18 1 brdifun ( ( 𝐴𝑋𝐵𝑋 ) → ( 𝐴 𝑅 𝐵 ↔ ¬ ( 𝐴 < 𝐵𝐵 < 𝐴 ) ) )
19 14 4 18 syl2anc ( 𝜑 → ( 𝐴 𝑅 𝐵 ↔ ¬ ( 𝐴 < 𝐵𝐵 < 𝐴 ) ) )
20 6 19 mpbid ( 𝜑 → ¬ ( 𝐴 < 𝐵𝐵 < 𝐴 ) )
21 olc ( 𝐵 < 𝐴 → ( 𝐴 < 𝐵𝐵 < 𝐴 ) )
22 20 21 nsyl ( 𝜑 → ¬ 𝐵 < 𝐴 )
23 22 pm2.21d ( 𝜑 → ( 𝐵 < 𝐴𝐶 < 𝐵 ) )
24 17 23 jaod ( 𝜑 → ( ( 𝐶 < 𝐵𝐵 < 𝐴 ) → 𝐶 < 𝐵 ) )
25 16 24 syld ( 𝜑 → ( 𝐶 < 𝐴𝐶 < 𝐵 ) )
26 3 swopolem ( ( 𝜑 ∧ ( 𝐶𝑋𝐵𝑋𝐴𝑋 ) ) → ( 𝐶 < 𝐵 → ( 𝐶 < 𝐴𝐴 < 𝐵 ) ) )
27 7 5 4 14 26 syl13anc ( 𝜑 → ( 𝐶 < 𝐵 → ( 𝐶 < 𝐴𝐴 < 𝐵 ) ) )
28 idd ( 𝜑 → ( 𝐶 < 𝐴𝐶 < 𝐴 ) )
29 orc ( 𝐴 < 𝐵 → ( 𝐴 < 𝐵𝐵 < 𝐴 ) )
30 20 29 nsyl ( 𝜑 → ¬ 𝐴 < 𝐵 )
31 30 pm2.21d ( 𝜑 → ( 𝐴 < 𝐵𝐶 < 𝐴 ) )
32 28 31 jaod ( 𝜑 → ( ( 𝐶 < 𝐴𝐴 < 𝐵 ) → 𝐶 < 𝐴 ) )
33 27 32 syld ( 𝜑 → ( 𝐶 < 𝐵𝐶 < 𝐴 ) )
34 25 33 impbid ( 𝜑 → ( 𝐶 < 𝐴𝐶 < 𝐵 ) )