Step |
Hyp |
Ref |
Expression |
1 |
|
is2ndc |
|- ( R e. 2ndc <-> E. r e. TopBases ( r ~<_ _om /\ ( topGen ` r ) = R ) ) |
2 |
|
is2ndc |
|- ( S e. 2ndc <-> E. s e. TopBases ( s ~<_ _om /\ ( topGen ` s ) = S ) ) |
3 |
|
reeanv |
|- ( E. r e. TopBases E. s e. TopBases ( ( r ~<_ _om /\ ( topGen ` r ) = R ) /\ ( s ~<_ _om /\ ( topGen ` s ) = S ) ) <-> ( E. r e. TopBases ( r ~<_ _om /\ ( topGen ` r ) = R ) /\ E. s e. TopBases ( s ~<_ _om /\ ( topGen ` s ) = S ) ) ) |
4 |
|
an4 |
|- ( ( ( r ~<_ _om /\ ( topGen ` r ) = R ) /\ ( s ~<_ _om /\ ( topGen ` s ) = S ) ) <-> ( ( r ~<_ _om /\ s ~<_ _om ) /\ ( ( topGen ` r ) = R /\ ( topGen ` s ) = S ) ) ) |
5 |
|
txbasval |
|- ( ( r e. TopBases /\ s e. TopBases ) -> ( ( topGen ` r ) tX ( topGen ` s ) ) = ( r tX s ) ) |
6 |
|
eqid |
|- ran ( x e. r , y e. s |-> ( x X. y ) ) = ran ( x e. r , y e. s |-> ( x X. y ) ) |
7 |
6
|
txval |
|- ( ( r e. TopBases /\ s e. TopBases ) -> ( r tX s ) = ( topGen ` ran ( x e. r , y e. s |-> ( x X. y ) ) ) ) |
8 |
5 7
|
eqtrd |
|- ( ( r e. TopBases /\ s e. TopBases ) -> ( ( topGen ` r ) tX ( topGen ` s ) ) = ( topGen ` ran ( x e. r , y e. s |-> ( x X. y ) ) ) ) |
9 |
8
|
adantr |
|- ( ( ( r e. TopBases /\ s e. TopBases ) /\ ( r ~<_ _om /\ s ~<_ _om ) ) -> ( ( topGen ` r ) tX ( topGen ` s ) ) = ( topGen ` ran ( x e. r , y e. s |-> ( x X. y ) ) ) ) |
10 |
6
|
txbas |
|- ( ( r e. TopBases /\ s e. TopBases ) -> ran ( x e. r , y e. s |-> ( x X. y ) ) e. TopBases ) |
11 |
10
|
adantr |
|- ( ( ( r e. TopBases /\ s e. TopBases ) /\ ( r ~<_ _om /\ s ~<_ _om ) ) -> ran ( x e. r , y e. s |-> ( x X. y ) ) e. TopBases ) |
12 |
|
omelon |
|- _om e. On |
13 |
|
vex |
|- s e. _V |
14 |
13
|
xpdom1 |
|- ( r ~<_ _om -> ( r X. s ) ~<_ ( _om X. s ) ) |
15 |
|
omex |
|- _om e. _V |
16 |
15
|
xpdom2 |
|- ( s ~<_ _om -> ( _om X. s ) ~<_ ( _om X. _om ) ) |
17 |
|
domtr |
|- ( ( ( r X. s ) ~<_ ( _om X. s ) /\ ( _om X. s ) ~<_ ( _om X. _om ) ) -> ( r X. s ) ~<_ ( _om X. _om ) ) |
18 |
14 16 17
|
syl2an |
|- ( ( r ~<_ _om /\ s ~<_ _om ) -> ( r X. s ) ~<_ ( _om X. _om ) ) |
19 |
18
|
adantl |
|- ( ( ( r e. TopBases /\ s e. TopBases ) /\ ( r ~<_ _om /\ s ~<_ _om ) ) -> ( r X. s ) ~<_ ( _om X. _om ) ) |
20 |
|
xpomen |
|- ( _om X. _om ) ~~ _om |
21 |
|
domentr |
|- ( ( ( r X. s ) ~<_ ( _om X. _om ) /\ ( _om X. _om ) ~~ _om ) -> ( r X. s ) ~<_ _om ) |
22 |
19 20 21
|
sylancl |
|- ( ( ( r e. TopBases /\ s e. TopBases ) /\ ( r ~<_ _om /\ s ~<_ _om ) ) -> ( r X. s ) ~<_ _om ) |
23 |
|
ondomen |
|- ( ( _om e. On /\ ( r X. s ) ~<_ _om ) -> ( r X. s ) e. dom card ) |
24 |
12 22 23
|
sylancr |
|- ( ( ( r e. TopBases /\ s e. TopBases ) /\ ( r ~<_ _om /\ s ~<_ _om ) ) -> ( r X. s ) e. dom card ) |
25 |
|
eqid |
|- ( x e. r , y e. s |-> ( x X. y ) ) = ( x e. r , y e. s |-> ( x X. y ) ) |
26 |
|
vex |
|- x e. _V |
27 |
|
vex |
|- y e. _V |
28 |
26 27
|
xpex |
|- ( x X. y ) e. _V |
29 |
25 28
|
fnmpoi |
|- ( x e. r , y e. s |-> ( x X. y ) ) Fn ( r X. s ) |
30 |
29
|
a1i |
|- ( ( ( r e. TopBases /\ s e. TopBases ) /\ ( r ~<_ _om /\ s ~<_ _om ) ) -> ( x e. r , y e. s |-> ( x X. y ) ) Fn ( r X. s ) ) |
31 |
|
dffn4 |
|- ( ( x e. r , y e. s |-> ( x X. y ) ) Fn ( r X. s ) <-> ( x e. r , y e. s |-> ( x X. y ) ) : ( r X. s ) -onto-> ran ( x e. r , y e. s |-> ( x X. y ) ) ) |
32 |
30 31
|
sylib |
|- ( ( ( r e. TopBases /\ s e. TopBases ) /\ ( r ~<_ _om /\ s ~<_ _om ) ) -> ( x e. r , y e. s |-> ( x X. y ) ) : ( r X. s ) -onto-> ran ( x e. r , y e. s |-> ( x X. y ) ) ) |
33 |
|
fodomnum |
|- ( ( r X. s ) e. dom card -> ( ( x e. r , y e. s |-> ( x X. y ) ) : ( r X. s ) -onto-> ran ( x e. r , y e. s |-> ( x X. y ) ) -> ran ( x e. r , y e. s |-> ( x X. y ) ) ~<_ ( r X. s ) ) ) |
34 |
24 32 33
|
sylc |
|- ( ( ( r e. TopBases /\ s e. TopBases ) /\ ( r ~<_ _om /\ s ~<_ _om ) ) -> ran ( x e. r , y e. s |-> ( x X. y ) ) ~<_ ( r X. s ) ) |
35 |
|
domtr |
|- ( ( ran ( x e. r , y e. s |-> ( x X. y ) ) ~<_ ( r X. s ) /\ ( r X. s ) ~<_ _om ) -> ran ( x e. r , y e. s |-> ( x X. y ) ) ~<_ _om ) |
36 |
34 22 35
|
syl2anc |
|- ( ( ( r e. TopBases /\ s e. TopBases ) /\ ( r ~<_ _om /\ s ~<_ _om ) ) -> ran ( x e. r , y e. s |-> ( x X. y ) ) ~<_ _om ) |
37 |
|
2ndci |
|- ( ( ran ( x e. r , y e. s |-> ( x X. y ) ) e. TopBases /\ ran ( x e. r , y e. s |-> ( x X. y ) ) ~<_ _om ) -> ( topGen ` ran ( x e. r , y e. s |-> ( x X. y ) ) ) e. 2ndc ) |
38 |
11 36 37
|
syl2anc |
|- ( ( ( r e. TopBases /\ s e. TopBases ) /\ ( r ~<_ _om /\ s ~<_ _om ) ) -> ( topGen ` ran ( x e. r , y e. s |-> ( x X. y ) ) ) e. 2ndc ) |
39 |
9 38
|
eqeltrd |
|- ( ( ( r e. TopBases /\ s e. TopBases ) /\ ( r ~<_ _om /\ s ~<_ _om ) ) -> ( ( topGen ` r ) tX ( topGen ` s ) ) e. 2ndc ) |
40 |
|
oveq12 |
|- ( ( ( topGen ` r ) = R /\ ( topGen ` s ) = S ) -> ( ( topGen ` r ) tX ( topGen ` s ) ) = ( R tX S ) ) |
41 |
40
|
eleq1d |
|- ( ( ( topGen ` r ) = R /\ ( topGen ` s ) = S ) -> ( ( ( topGen ` r ) tX ( topGen ` s ) ) e. 2ndc <-> ( R tX S ) e. 2ndc ) ) |
42 |
39 41
|
syl5ibcom |
|- ( ( ( r e. TopBases /\ s e. TopBases ) /\ ( r ~<_ _om /\ s ~<_ _om ) ) -> ( ( ( topGen ` r ) = R /\ ( topGen ` s ) = S ) -> ( R tX S ) e. 2ndc ) ) |
43 |
42
|
expimpd |
|- ( ( r e. TopBases /\ s e. TopBases ) -> ( ( ( r ~<_ _om /\ s ~<_ _om ) /\ ( ( topGen ` r ) = R /\ ( topGen ` s ) = S ) ) -> ( R tX S ) e. 2ndc ) ) |
44 |
4 43
|
syl5bi |
|- ( ( r e. TopBases /\ s e. TopBases ) -> ( ( ( r ~<_ _om /\ ( topGen ` r ) = R ) /\ ( s ~<_ _om /\ ( topGen ` s ) = S ) ) -> ( R tX S ) e. 2ndc ) ) |
45 |
44
|
rexlimivv |
|- ( E. r e. TopBases E. s e. TopBases ( ( r ~<_ _om /\ ( topGen ` r ) = R ) /\ ( s ~<_ _om /\ ( topGen ` s ) = S ) ) -> ( R tX S ) e. 2ndc ) |
46 |
3 45
|
sylbir |
|- ( ( E. r e. TopBases ( r ~<_ _om /\ ( topGen ` r ) = R ) /\ E. s e. TopBases ( s ~<_ _om /\ ( topGen ` s ) = S ) ) -> ( R tX S ) e. 2ndc ) |
47 |
1 2 46
|
syl2anb |
|- ( ( R e. 2ndc /\ S e. 2ndc ) -> ( R tX S ) e. 2ndc ) |