| Step |
Hyp |
Ref |
Expression |
| 1 |
|
is2ndc |
|
| 2 |
|
is2ndc |
|
| 3 |
|
reeanv |
|
| 4 |
|
an4 |
|
| 5 |
|
txbasval |
|
| 6 |
|
eqid |
|
| 7 |
6
|
txval |
|
| 8 |
5 7
|
eqtrd |
|
| 9 |
8
|
adantr |
|
| 10 |
6
|
txbas |
|
| 11 |
10
|
adantr |
|
| 12 |
|
omelon |
|
| 13 |
|
vex |
|
| 14 |
13
|
xpdom1 |
|
| 15 |
|
omex |
|
| 16 |
15
|
xpdom2 |
|
| 17 |
|
domtr |
|
| 18 |
14 16 17
|
syl2an |
|
| 19 |
18
|
adantl |
|
| 20 |
|
xpomen |
|
| 21 |
|
domentr |
|
| 22 |
19 20 21
|
sylancl |
|
| 23 |
|
ondomen |
|
| 24 |
12 22 23
|
sylancr |
|
| 25 |
|
eqid |
|
| 26 |
|
vex |
|
| 27 |
|
vex |
|
| 28 |
26 27
|
xpex |
|
| 29 |
25 28
|
fnmpoi |
|
| 30 |
29
|
a1i |
|
| 31 |
|
dffn4 |
|
| 32 |
30 31
|
sylib |
|
| 33 |
|
fodomnum |
|
| 34 |
24 32 33
|
sylc |
|
| 35 |
|
domtr |
|
| 36 |
34 22 35
|
syl2anc |
|
| 37 |
|
2ndci |
|
| 38 |
11 36 37
|
syl2anc |
|
| 39 |
9 38
|
eqeltrd |
|
| 40 |
|
oveq12 |
|
| 41 |
40
|
eleq1d |
|
| 42 |
39 41
|
syl5ibcom |
|
| 43 |
42
|
expimpd |
|
| 44 |
4 43
|
biimtrid |
|
| 45 |
44
|
rexlimivv |
|
| 46 |
3 45
|
sylbir |
|
| 47 |
1 2 46
|
syl2anb |
|