| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eqid |
|
| 2 |
1
|
txval |
|
| 3 |
|
bastg |
|
| 4 |
|
bastg |
|
| 5 |
|
resmpo |
|
| 6 |
3 4 5
|
syl2an |
|
| 7 |
|
resss |
|
| 8 |
6 7
|
eqsstrrdi |
|
| 9 |
|
rnss |
|
| 10 |
8 9
|
syl |
|
| 11 |
|
eltg3 |
|
| 12 |
|
eltg3 |
|
| 13 |
11 12
|
bi2anan9 |
|
| 14 |
|
exdistrv |
|
| 15 |
|
an4 |
|
| 16 |
|
uniiun |
|
| 17 |
|
uniiun |
|
| 18 |
16 17
|
xpeq12i |
|
| 19 |
|
xpiundir |
|
| 20 |
|
xpiundi |
|
| 21 |
20
|
a1i |
|
| 22 |
21
|
iuneq2i |
|
| 23 |
18 19 22
|
3eqtri |
|
| 24 |
|
ovex |
|
| 25 |
|
ssel2 |
|
| 26 |
|
ssel2 |
|
| 27 |
25 26
|
anim12i |
|
| 28 |
27
|
an4s |
|
| 29 |
|
txopn |
|
| 30 |
28 29
|
sylan2 |
|
| 31 |
30
|
anassrs |
|
| 32 |
31
|
anassrs |
|
| 33 |
32
|
ralrimiva |
|
| 34 |
|
tgiun |
|
| 35 |
24 33 34
|
sylancr |
|
| 36 |
1
|
txbasex |
|
| 37 |
|
tgidm |
|
| 38 |
36 37
|
syl |
|
| 39 |
2
|
fveq2d |
|
| 40 |
38 39 2
|
3eqtr4d |
|
| 41 |
40
|
adantr |
|
| 42 |
41
|
adantr |
|
| 43 |
35 42
|
eleqtrd |
|
| 44 |
43
|
ralrimiva |
|
| 45 |
|
tgiun |
|
| 46 |
24 44 45
|
sylancr |
|
| 47 |
46 41
|
eleqtrd |
|
| 48 |
23 47
|
eqeltrid |
|
| 49 |
|
xpeq12 |
|
| 50 |
49
|
eleq1d |
|
| 51 |
48 50
|
syl5ibrcom |
|
| 52 |
51
|
expimpd |
|
| 53 |
15 52
|
biimtrid |
|
| 54 |
53
|
exlimdvv |
|
| 55 |
14 54
|
biimtrrid |
|
| 56 |
13 55
|
sylbid |
|
| 57 |
56
|
ralrimivv |
|
| 58 |
|
eqid |
|
| 59 |
58
|
fmpo |
|
| 60 |
57 59
|
sylib |
|
| 61 |
60
|
frnd |
|
| 62 |
61 2
|
sseqtrd |
|
| 63 |
|
2basgen |
|
| 64 |
10 62 63
|
syl2anc |
|
| 65 |
|
fvex |
|
| 66 |
|
fvex |
|
| 67 |
|
eqid |
|
| 68 |
67
|
txval |
|
| 69 |
65 66 68
|
mp2an |
|
| 70 |
64 69
|
eqtr4di |
|
| 71 |
2 70
|
eqtr2d |
|