Step |
Hyp |
Ref |
Expression |
1 |
|
unbdqndv1.g |
|- G = ( z e. ( X \ { A } ) |-> ( ( ( F ` z ) - ( F ` A ) ) / ( z - A ) ) ) |
2 |
|
unbdqndv1.1 |
|- ( ph -> S C_ CC ) |
3 |
|
unbdqndv1.2 |
|- ( ph -> X C_ S ) |
4 |
|
unbdqndv1.3 |
|- ( ph -> F : X --> CC ) |
5 |
|
unbdqndv1.4 |
|- ( ph -> A. b e. RR+ A. d e. RR+ E. x e. ( X \ { A } ) ( ( abs ` ( x - A ) ) < d /\ b <_ ( abs ` ( G ` x ) ) ) ) |
6 |
|
noel |
|- -. y e. (/) |
7 |
6
|
a1i |
|- ( ( ph /\ A e. dom ( S _D F ) ) -> -. y e. (/) ) |
8 |
3 2
|
sstrd |
|- ( ph -> X C_ CC ) |
9 |
8
|
adantr |
|- ( ( ph /\ A e. dom ( S _D F ) ) -> X C_ CC ) |
10 |
9
|
ssdifssd |
|- ( ( ph /\ A e. dom ( S _D F ) ) -> ( X \ { A } ) C_ CC ) |
11 |
4
|
adantr |
|- ( ( ph /\ A e. dom ( S _D F ) ) -> F : X --> CC ) |
12 |
2 4 3
|
dvbss |
|- ( ph -> dom ( S _D F ) C_ X ) |
13 |
12
|
sselda |
|- ( ( ph /\ A e. dom ( S _D F ) ) -> A e. X ) |
14 |
11 9 13
|
dvlem |
|- ( ( ( ph /\ A e. dom ( S _D F ) ) /\ z e. ( X \ { A } ) ) -> ( ( ( F ` z ) - ( F ` A ) ) / ( z - A ) ) e. CC ) |
15 |
14 1
|
fmptd |
|- ( ( ph /\ A e. dom ( S _D F ) ) -> G : ( X \ { A } ) --> CC ) |
16 |
9 13
|
sseldd |
|- ( ( ph /\ A e. dom ( S _D F ) ) -> A e. CC ) |
17 |
5
|
adantr |
|- ( ( ph /\ A e. dom ( S _D F ) ) -> A. b e. RR+ A. d e. RR+ E. x e. ( X \ { A } ) ( ( abs ` ( x - A ) ) < d /\ b <_ ( abs ` ( G ` x ) ) ) ) |
18 |
10 15 16 17
|
unblimceq0 |
|- ( ( ph /\ A e. dom ( S _D F ) ) -> ( G limCC A ) = (/) ) |
19 |
7 18
|
neleqtrrd |
|- ( ( ph /\ A e. dom ( S _D F ) ) -> -. y e. ( G limCC A ) ) |
20 |
19
|
intnand |
|- ( ( ph /\ A e. dom ( S _D F ) ) -> -. ( A e. ( ( int ` ( ( TopOpen ` CCfld ) |`t S ) ) ` X ) /\ y e. ( G limCC A ) ) ) |
21 |
|
eqid |
|- ( ( TopOpen ` CCfld ) |`t S ) = ( ( TopOpen ` CCfld ) |`t S ) |
22 |
|
eqid |
|- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
23 |
21 22 1 2 4 3
|
eldv |
|- ( ph -> ( A ( S _D F ) y <-> ( A e. ( ( int ` ( ( TopOpen ` CCfld ) |`t S ) ) ` X ) /\ y e. ( G limCC A ) ) ) ) |
24 |
23
|
notbid |
|- ( ph -> ( -. A ( S _D F ) y <-> -. ( A e. ( ( int ` ( ( TopOpen ` CCfld ) |`t S ) ) ` X ) /\ y e. ( G limCC A ) ) ) ) |
25 |
24
|
adantr |
|- ( ( ph /\ A e. dom ( S _D F ) ) -> ( -. A ( S _D F ) y <-> -. ( A e. ( ( int ` ( ( TopOpen ` CCfld ) |`t S ) ) ` X ) /\ y e. ( G limCC A ) ) ) ) |
26 |
20 25
|
mpbird |
|- ( ( ph /\ A e. dom ( S _D F ) ) -> -. A ( S _D F ) y ) |
27 |
26
|
alrimiv |
|- ( ( ph /\ A e. dom ( S _D F ) ) -> A. y -. A ( S _D F ) y ) |
28 |
|
simpr |
|- ( ( ph /\ A e. dom ( S _D F ) ) -> A e. dom ( S _D F ) ) |
29 |
|
eldmg |
|- ( A e. dom ( S _D F ) -> ( A e. dom ( S _D F ) <-> E. y A ( S _D F ) y ) ) |
30 |
28 29
|
syl |
|- ( ( ph /\ A e. dom ( S _D F ) ) -> ( A e. dom ( S _D F ) <-> E. y A ( S _D F ) y ) ) |
31 |
30
|
notbid |
|- ( ( ph /\ A e. dom ( S _D F ) ) -> ( -. A e. dom ( S _D F ) <-> -. E. y A ( S _D F ) y ) ) |
32 |
|
alnex |
|- ( A. y -. A ( S _D F ) y <-> -. E. y A ( S _D F ) y ) |
33 |
32
|
a1i |
|- ( ( ph /\ A e. dom ( S _D F ) ) -> ( A. y -. A ( S _D F ) y <-> -. E. y A ( S _D F ) y ) ) |
34 |
33
|
bicomd |
|- ( ( ph /\ A e. dom ( S _D F ) ) -> ( -. E. y A ( S _D F ) y <-> A. y -. A ( S _D F ) y ) ) |
35 |
31 34
|
bitrd |
|- ( ( ph /\ A e. dom ( S _D F ) ) -> ( -. A e. dom ( S _D F ) <-> A. y -. A ( S _D F ) y ) ) |
36 |
27 35
|
mpbird |
|- ( ( ph /\ A e. dom ( S _D F ) ) -> -. A e. dom ( S _D F ) ) |
37 |
36
|
pm2.01da |
|- ( ph -> -. A e. dom ( S _D F ) ) |