Step |
Hyp |
Ref |
Expression |
1 |
|
unbdqndv1.g |
⊢ 𝐺 = ( 𝑧 ∈ ( 𝑋 ∖ { 𝐴 } ) ↦ ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝐴 ) ) / ( 𝑧 − 𝐴 ) ) ) |
2 |
|
unbdqndv1.1 |
⊢ ( 𝜑 → 𝑆 ⊆ ℂ ) |
3 |
|
unbdqndv1.2 |
⊢ ( 𝜑 → 𝑋 ⊆ 𝑆 ) |
4 |
|
unbdqndv1.3 |
⊢ ( 𝜑 → 𝐹 : 𝑋 ⟶ ℂ ) |
5 |
|
unbdqndv1.4 |
⊢ ( 𝜑 → ∀ 𝑏 ∈ ℝ+ ∀ 𝑑 ∈ ℝ+ ∃ 𝑥 ∈ ( 𝑋 ∖ { 𝐴 } ) ( ( abs ‘ ( 𝑥 − 𝐴 ) ) < 𝑑 ∧ 𝑏 ≤ ( abs ‘ ( 𝐺 ‘ 𝑥 ) ) ) ) |
6 |
|
noel |
⊢ ¬ 𝑦 ∈ ∅ |
7 |
6
|
a1i |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ dom ( 𝑆 D 𝐹 ) ) → ¬ 𝑦 ∈ ∅ ) |
8 |
3 2
|
sstrd |
⊢ ( 𝜑 → 𝑋 ⊆ ℂ ) |
9 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ dom ( 𝑆 D 𝐹 ) ) → 𝑋 ⊆ ℂ ) |
10 |
9
|
ssdifssd |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ dom ( 𝑆 D 𝐹 ) ) → ( 𝑋 ∖ { 𝐴 } ) ⊆ ℂ ) |
11 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ dom ( 𝑆 D 𝐹 ) ) → 𝐹 : 𝑋 ⟶ ℂ ) |
12 |
2 4 3
|
dvbss |
⊢ ( 𝜑 → dom ( 𝑆 D 𝐹 ) ⊆ 𝑋 ) |
13 |
12
|
sselda |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ dom ( 𝑆 D 𝐹 ) ) → 𝐴 ∈ 𝑋 ) |
14 |
11 9 13
|
dvlem |
⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ dom ( 𝑆 D 𝐹 ) ) ∧ 𝑧 ∈ ( 𝑋 ∖ { 𝐴 } ) ) → ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝐴 ) ) / ( 𝑧 − 𝐴 ) ) ∈ ℂ ) |
15 |
14 1
|
fmptd |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ dom ( 𝑆 D 𝐹 ) ) → 𝐺 : ( 𝑋 ∖ { 𝐴 } ) ⟶ ℂ ) |
16 |
9 13
|
sseldd |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ dom ( 𝑆 D 𝐹 ) ) → 𝐴 ∈ ℂ ) |
17 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ dom ( 𝑆 D 𝐹 ) ) → ∀ 𝑏 ∈ ℝ+ ∀ 𝑑 ∈ ℝ+ ∃ 𝑥 ∈ ( 𝑋 ∖ { 𝐴 } ) ( ( abs ‘ ( 𝑥 − 𝐴 ) ) < 𝑑 ∧ 𝑏 ≤ ( abs ‘ ( 𝐺 ‘ 𝑥 ) ) ) ) |
18 |
10 15 16 17
|
unblimceq0 |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ dom ( 𝑆 D 𝐹 ) ) → ( 𝐺 limℂ 𝐴 ) = ∅ ) |
19 |
7 18
|
neleqtrrd |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ dom ( 𝑆 D 𝐹 ) ) → ¬ 𝑦 ∈ ( 𝐺 limℂ 𝐴 ) ) |
20 |
19
|
intnand |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ dom ( 𝑆 D 𝐹 ) ) → ¬ ( 𝐴 ∈ ( ( int ‘ ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ) ‘ 𝑋 ) ∧ 𝑦 ∈ ( 𝐺 limℂ 𝐴 ) ) ) |
21 |
|
eqid |
⊢ ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) = ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) |
22 |
|
eqid |
⊢ ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld ) |
23 |
21 22 1 2 4 3
|
eldv |
⊢ ( 𝜑 → ( 𝐴 ( 𝑆 D 𝐹 ) 𝑦 ↔ ( 𝐴 ∈ ( ( int ‘ ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ) ‘ 𝑋 ) ∧ 𝑦 ∈ ( 𝐺 limℂ 𝐴 ) ) ) ) |
24 |
23
|
notbid |
⊢ ( 𝜑 → ( ¬ 𝐴 ( 𝑆 D 𝐹 ) 𝑦 ↔ ¬ ( 𝐴 ∈ ( ( int ‘ ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ) ‘ 𝑋 ) ∧ 𝑦 ∈ ( 𝐺 limℂ 𝐴 ) ) ) ) |
25 |
24
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ dom ( 𝑆 D 𝐹 ) ) → ( ¬ 𝐴 ( 𝑆 D 𝐹 ) 𝑦 ↔ ¬ ( 𝐴 ∈ ( ( int ‘ ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ) ‘ 𝑋 ) ∧ 𝑦 ∈ ( 𝐺 limℂ 𝐴 ) ) ) ) |
26 |
20 25
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ dom ( 𝑆 D 𝐹 ) ) → ¬ 𝐴 ( 𝑆 D 𝐹 ) 𝑦 ) |
27 |
26
|
alrimiv |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ dom ( 𝑆 D 𝐹 ) ) → ∀ 𝑦 ¬ 𝐴 ( 𝑆 D 𝐹 ) 𝑦 ) |
28 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ dom ( 𝑆 D 𝐹 ) ) → 𝐴 ∈ dom ( 𝑆 D 𝐹 ) ) |
29 |
|
eldmg |
⊢ ( 𝐴 ∈ dom ( 𝑆 D 𝐹 ) → ( 𝐴 ∈ dom ( 𝑆 D 𝐹 ) ↔ ∃ 𝑦 𝐴 ( 𝑆 D 𝐹 ) 𝑦 ) ) |
30 |
28 29
|
syl |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ dom ( 𝑆 D 𝐹 ) ) → ( 𝐴 ∈ dom ( 𝑆 D 𝐹 ) ↔ ∃ 𝑦 𝐴 ( 𝑆 D 𝐹 ) 𝑦 ) ) |
31 |
30
|
notbid |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ dom ( 𝑆 D 𝐹 ) ) → ( ¬ 𝐴 ∈ dom ( 𝑆 D 𝐹 ) ↔ ¬ ∃ 𝑦 𝐴 ( 𝑆 D 𝐹 ) 𝑦 ) ) |
32 |
|
alnex |
⊢ ( ∀ 𝑦 ¬ 𝐴 ( 𝑆 D 𝐹 ) 𝑦 ↔ ¬ ∃ 𝑦 𝐴 ( 𝑆 D 𝐹 ) 𝑦 ) |
33 |
32
|
a1i |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ dom ( 𝑆 D 𝐹 ) ) → ( ∀ 𝑦 ¬ 𝐴 ( 𝑆 D 𝐹 ) 𝑦 ↔ ¬ ∃ 𝑦 𝐴 ( 𝑆 D 𝐹 ) 𝑦 ) ) |
34 |
33
|
bicomd |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ dom ( 𝑆 D 𝐹 ) ) → ( ¬ ∃ 𝑦 𝐴 ( 𝑆 D 𝐹 ) 𝑦 ↔ ∀ 𝑦 ¬ 𝐴 ( 𝑆 D 𝐹 ) 𝑦 ) ) |
35 |
31 34
|
bitrd |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ dom ( 𝑆 D 𝐹 ) ) → ( ¬ 𝐴 ∈ dom ( 𝑆 D 𝐹 ) ↔ ∀ 𝑦 ¬ 𝐴 ( 𝑆 D 𝐹 ) 𝑦 ) ) |
36 |
27 35
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ dom ( 𝑆 D 𝐹 ) ) → ¬ 𝐴 ∈ dom ( 𝑆 D 𝐹 ) ) |
37 |
36
|
pm2.01da |
⊢ ( 𝜑 → ¬ 𝐴 ∈ dom ( 𝑆 D 𝐹 ) ) |