Step |
Hyp |
Ref |
Expression |
1 |
|
2pthnloop.i |
|- I = ( iEdg ` G ) |
2 |
1
|
2pthnloop |
|- ( ( F ( Paths ` G ) P /\ 1 < ( # ` F ) ) -> A. i e. ( 0 ..^ ( # ` F ) ) 2 <_ ( # ` ( I ` ( F ` i ) ) ) ) |
3 |
2
|
3adant1 |
|- ( ( G e. UPGraph /\ F ( Paths ` G ) P /\ 1 < ( # ` F ) ) -> A. i e. ( 0 ..^ ( # ` F ) ) 2 <_ ( # ` ( I ` ( F ` i ) ) ) ) |
4 |
|
pthiswlk |
|- ( F ( Paths ` G ) P -> F ( Walks ` G ) P ) |
5 |
1
|
wlkf |
|- ( F ( Walks ` G ) P -> F e. Word dom I ) |
6 |
|
simp2 |
|- ( ( F e. Word dom I /\ G e. UPGraph /\ i e. ( 0 ..^ ( # ` F ) ) ) -> G e. UPGraph ) |
7 |
|
wrdsymbcl |
|- ( ( F e. Word dom I /\ i e. ( 0 ..^ ( # ` F ) ) ) -> ( F ` i ) e. dom I ) |
8 |
1
|
upgrle2 |
|- ( ( G e. UPGraph /\ ( F ` i ) e. dom I ) -> ( # ` ( I ` ( F ` i ) ) ) <_ 2 ) |
9 |
6 7 8
|
3imp3i2an |
|- ( ( F e. Word dom I /\ G e. UPGraph /\ i e. ( 0 ..^ ( # ` F ) ) ) -> ( # ` ( I ` ( F ` i ) ) ) <_ 2 ) |
10 |
|
fvex |
|- ( I ` ( F ` i ) ) e. _V |
11 |
|
hashxnn0 |
|- ( ( I ` ( F ` i ) ) e. _V -> ( # ` ( I ` ( F ` i ) ) ) e. NN0* ) |
12 |
|
xnn0xr |
|- ( ( # ` ( I ` ( F ` i ) ) ) e. NN0* -> ( # ` ( I ` ( F ` i ) ) ) e. RR* ) |
13 |
10 11 12
|
mp2b |
|- ( # ` ( I ` ( F ` i ) ) ) e. RR* |
14 |
|
2re |
|- 2 e. RR |
15 |
14
|
rexri |
|- 2 e. RR* |
16 |
13 15
|
pm3.2i |
|- ( ( # ` ( I ` ( F ` i ) ) ) e. RR* /\ 2 e. RR* ) |
17 |
|
xrletri3 |
|- ( ( ( # ` ( I ` ( F ` i ) ) ) e. RR* /\ 2 e. RR* ) -> ( ( # ` ( I ` ( F ` i ) ) ) = 2 <-> ( ( # ` ( I ` ( F ` i ) ) ) <_ 2 /\ 2 <_ ( # ` ( I ` ( F ` i ) ) ) ) ) ) |
18 |
16 17
|
mp1i |
|- ( ( F e. Word dom I /\ G e. UPGraph /\ i e. ( 0 ..^ ( # ` F ) ) ) -> ( ( # ` ( I ` ( F ` i ) ) ) = 2 <-> ( ( # ` ( I ` ( F ` i ) ) ) <_ 2 /\ 2 <_ ( # ` ( I ` ( F ` i ) ) ) ) ) ) |
19 |
18
|
biimprd |
|- ( ( F e. Word dom I /\ G e. UPGraph /\ i e. ( 0 ..^ ( # ` F ) ) ) -> ( ( ( # ` ( I ` ( F ` i ) ) ) <_ 2 /\ 2 <_ ( # ` ( I ` ( F ` i ) ) ) ) -> ( # ` ( I ` ( F ` i ) ) ) = 2 ) ) |
20 |
9 19
|
mpand |
|- ( ( F e. Word dom I /\ G e. UPGraph /\ i e. ( 0 ..^ ( # ` F ) ) ) -> ( 2 <_ ( # ` ( I ` ( F ` i ) ) ) -> ( # ` ( I ` ( F ` i ) ) ) = 2 ) ) |
21 |
20
|
3exp |
|- ( F e. Word dom I -> ( G e. UPGraph -> ( i e. ( 0 ..^ ( # ` F ) ) -> ( 2 <_ ( # ` ( I ` ( F ` i ) ) ) -> ( # ` ( I ` ( F ` i ) ) ) = 2 ) ) ) ) |
22 |
4 5 21
|
3syl |
|- ( F ( Paths ` G ) P -> ( G e. UPGraph -> ( i e. ( 0 ..^ ( # ` F ) ) -> ( 2 <_ ( # ` ( I ` ( F ` i ) ) ) -> ( # ` ( I ` ( F ` i ) ) ) = 2 ) ) ) ) |
23 |
22
|
impcom |
|- ( ( G e. UPGraph /\ F ( Paths ` G ) P ) -> ( i e. ( 0 ..^ ( # ` F ) ) -> ( 2 <_ ( # ` ( I ` ( F ` i ) ) ) -> ( # ` ( I ` ( F ` i ) ) ) = 2 ) ) ) |
24 |
23
|
3adant3 |
|- ( ( G e. UPGraph /\ F ( Paths ` G ) P /\ 1 < ( # ` F ) ) -> ( i e. ( 0 ..^ ( # ` F ) ) -> ( 2 <_ ( # ` ( I ` ( F ` i ) ) ) -> ( # ` ( I ` ( F ` i ) ) ) = 2 ) ) ) |
25 |
24
|
imp |
|- ( ( ( G e. UPGraph /\ F ( Paths ` G ) P /\ 1 < ( # ` F ) ) /\ i e. ( 0 ..^ ( # ` F ) ) ) -> ( 2 <_ ( # ` ( I ` ( F ` i ) ) ) -> ( # ` ( I ` ( F ` i ) ) ) = 2 ) ) |
26 |
25
|
ralimdva |
|- ( ( G e. UPGraph /\ F ( Paths ` G ) P /\ 1 < ( # ` F ) ) -> ( A. i e. ( 0 ..^ ( # ` F ) ) 2 <_ ( # ` ( I ` ( F ` i ) ) ) -> A. i e. ( 0 ..^ ( # ` F ) ) ( # ` ( I ` ( F ` i ) ) ) = 2 ) ) |
27 |
3 26
|
mpd |
|- ( ( G e. UPGraph /\ F ( Paths ` G ) P /\ 1 < ( # ` F ) ) -> A. i e. ( 0 ..^ ( # ` F ) ) ( # ` ( I ` ( F ` i ) ) ) = 2 ) |