| Step |
Hyp |
Ref |
Expression |
| 1 |
|
uptr2a.a |
|- A = ( Base ` C ) |
| 2 |
|
uptr2a.b |
|- B = ( Base ` D ) |
| 3 |
|
uptr2a.y |
|- ( ph -> Y = ( ( 1st ` K ) ` X ) ) |
| 4 |
|
uptr2a.f |
|- ( ph -> ( G o.func K ) = F ) |
| 5 |
|
uptr2a.x |
|- ( ph -> X e. A ) |
| 6 |
|
uptr2a.g |
|- ( ph -> G e. ( D Func E ) ) |
| 7 |
|
uptr2a.k |
|- ( ph -> K e. ( ( C Full D ) i^i ( C Faith D ) ) ) |
| 8 |
|
uptr2a.1 |
|- ( ph -> ( 1st ` K ) : A -onto-> B ) |
| 9 |
|
relfull |
|- Rel ( C Full D ) |
| 10 |
|
relin1 |
|- ( Rel ( C Full D ) -> Rel ( ( C Full D ) i^i ( C Faith D ) ) ) |
| 11 |
9 10
|
ax-mp |
|- Rel ( ( C Full D ) i^i ( C Faith D ) ) |
| 12 |
|
1st2ndbr |
|- ( ( Rel ( ( C Full D ) i^i ( C Faith D ) ) /\ K e. ( ( C Full D ) i^i ( C Faith D ) ) ) -> ( 1st ` K ) ( ( C Full D ) i^i ( C Faith D ) ) ( 2nd ` K ) ) |
| 13 |
11 7 12
|
sylancr |
|- ( ph -> ( 1st ` K ) ( ( C Full D ) i^i ( C Faith D ) ) ( 2nd ` K ) ) |
| 14 |
|
inss1 |
|- ( ( C Full D ) i^i ( C Faith D ) ) C_ ( C Full D ) |
| 15 |
|
fullfunc |
|- ( C Full D ) C_ ( C Func D ) |
| 16 |
14 15
|
sstri |
|- ( ( C Full D ) i^i ( C Faith D ) ) C_ ( C Func D ) |
| 17 |
16 7
|
sselid |
|- ( ph -> K e. ( C Func D ) ) |
| 18 |
17 6
|
cofu1st2nd |
|- ( ph -> ( G o.func K ) = ( <. ( 1st ` G ) , ( 2nd ` G ) >. o.func <. ( 1st ` K ) , ( 2nd ` K ) >. ) ) |
| 19 |
|
relfunc |
|- Rel ( C Func E ) |
| 20 |
17 6
|
cofucl |
|- ( ph -> ( G o.func K ) e. ( C Func E ) ) |
| 21 |
4 20
|
eqeltrrd |
|- ( ph -> F e. ( C Func E ) ) |
| 22 |
|
1st2nd |
|- ( ( Rel ( C Func E ) /\ F e. ( C Func E ) ) -> F = <. ( 1st ` F ) , ( 2nd ` F ) >. ) |
| 23 |
19 21 22
|
sylancr |
|- ( ph -> F = <. ( 1st ` F ) , ( 2nd ` F ) >. ) |
| 24 |
4 18 23
|
3eqtr3d |
|- ( ph -> ( <. ( 1st ` G ) , ( 2nd ` G ) >. o.func <. ( 1st ` K ) , ( 2nd ` K ) >. ) = <. ( 1st ` F ) , ( 2nd ` F ) >. ) |
| 25 |
6
|
func1st2nd |
|- ( ph -> ( 1st ` G ) ( D Func E ) ( 2nd ` G ) ) |
| 26 |
1 2 3 8 13 24 5 25
|
uptr2 |
|- ( ph -> ( X ( <. ( 1st ` F ) , ( 2nd ` F ) >. ( C UP E ) Z ) M <-> Y ( <. ( 1st ` G ) , ( 2nd ` G ) >. ( D UP E ) Z ) M ) ) |
| 27 |
21
|
up1st2ndb |
|- ( ph -> ( X ( F ( C UP E ) Z ) M <-> X ( <. ( 1st ` F ) , ( 2nd ` F ) >. ( C UP E ) Z ) M ) ) |
| 28 |
6
|
up1st2ndb |
|- ( ph -> ( Y ( G ( D UP E ) Z ) M <-> Y ( <. ( 1st ` G ) , ( 2nd ` G ) >. ( D UP E ) Z ) M ) ) |
| 29 |
26 27 28
|
3bitr4d |
|- ( ph -> ( X ( F ( C UP E ) Z ) M <-> Y ( G ( D UP E ) Z ) M ) ) |