| Step |
Hyp |
Ref |
Expression |
| 1 |
|
uptr2.a |
|- A = ( Base ` C ) |
| 2 |
|
uptr2.b |
|- B = ( Base ` D ) |
| 3 |
|
uptr2.y |
|- ( ph -> Y = ( R ` X ) ) |
| 4 |
|
uptr2.r |
|- ( ph -> R : A -onto-> B ) |
| 5 |
|
uptr2.s |
|- ( ph -> R ( ( C Full D ) i^i ( C Faith D ) ) S ) |
| 6 |
|
uptr2.f |
|- ( ph -> ( <. K , L >. o.func <. R , S >. ) = <. F , G >. ) |
| 7 |
|
uptr2.x |
|- ( ph -> X e. A ) |
| 8 |
|
uptr2.k |
|- ( ph -> K ( D Func E ) L ) |
| 9 |
|
simpr |
|- ( ( ph /\ X ( <. F , G >. ( C UP E ) Z ) M ) -> X ( <. F , G >. ( C UP E ) Z ) M ) |
| 10 |
|
eqid |
|- ( Base ` E ) = ( Base ` E ) |
| 11 |
9 10
|
uprcl3 |
|- ( ( ph /\ X ( <. F , G >. ( C UP E ) Z ) M ) -> Z e. ( Base ` E ) ) |
| 12 |
|
eqid |
|- ( Hom ` E ) = ( Hom ` E ) |
| 13 |
9 12
|
uprcl5 |
|- ( ( ph /\ X ( <. F , G >. ( C UP E ) Z ) M ) -> M e. ( Z ( Hom ` E ) ( F ` X ) ) ) |
| 14 |
11 13
|
jca |
|- ( ( ph /\ X ( <. F , G >. ( C UP E ) Z ) M ) -> ( Z e. ( Base ` E ) /\ M e. ( Z ( Hom ` E ) ( F ` X ) ) ) ) |
| 15 |
|
simpr |
|- ( ( ph /\ Y ( <. K , L >. ( D UP E ) Z ) M ) -> Y ( <. K , L >. ( D UP E ) Z ) M ) |
| 16 |
15 10
|
uprcl3 |
|- ( ( ph /\ Y ( <. K , L >. ( D UP E ) Z ) M ) -> Z e. ( Base ` E ) ) |
| 17 |
15 12
|
uprcl5 |
|- ( ( ph /\ Y ( <. K , L >. ( D UP E ) Z ) M ) -> M e. ( Z ( Hom ` E ) ( K ` Y ) ) ) |
| 18 |
3
|
fveq2d |
|- ( ph -> ( K ` Y ) = ( K ` ( R ` X ) ) ) |
| 19 |
|
inss1 |
|- ( ( C Full D ) i^i ( C Faith D ) ) C_ ( C Full D ) |
| 20 |
|
fullfunc |
|- ( C Full D ) C_ ( C Func D ) |
| 21 |
19 20
|
sstri |
|- ( ( C Full D ) i^i ( C Faith D ) ) C_ ( C Func D ) |
| 22 |
21
|
ssbri |
|- ( R ( ( C Full D ) i^i ( C Faith D ) ) S -> R ( C Func D ) S ) |
| 23 |
5 22
|
syl |
|- ( ph -> R ( C Func D ) S ) |
| 24 |
1 23 8 6 7
|
cofu1a |
|- ( ph -> ( K ` ( R ` X ) ) = ( F ` X ) ) |
| 25 |
18 24
|
eqtrd |
|- ( ph -> ( K ` Y ) = ( F ` X ) ) |
| 26 |
25
|
oveq2d |
|- ( ph -> ( Z ( Hom ` E ) ( K ` Y ) ) = ( Z ( Hom ` E ) ( F ` X ) ) ) |
| 27 |
26
|
adantr |
|- ( ( ph /\ Y ( <. K , L >. ( D UP E ) Z ) M ) -> ( Z ( Hom ` E ) ( K ` Y ) ) = ( Z ( Hom ` E ) ( F ` X ) ) ) |
| 28 |
17 27
|
eleqtrd |
|- ( ( ph /\ Y ( <. K , L >. ( D UP E ) Z ) M ) -> M e. ( Z ( Hom ` E ) ( F ` X ) ) ) |
| 29 |
16 28
|
jca |
|- ( ( ph /\ Y ( <. K , L >. ( D UP E ) Z ) M ) -> ( Z e. ( Base ` E ) /\ M e. ( Z ( Hom ` E ) ( F ` X ) ) ) ) |
| 30 |
4
|
adantr |
|- ( ( ph /\ ( Z e. ( Base ` E ) /\ M e. ( Z ( Hom ` E ) ( F ` X ) ) ) ) -> R : A -onto-> B ) |
| 31 |
|
fof |
|- ( R : A -onto-> B -> R : A --> B ) |
| 32 |
30 31
|
syl |
|- ( ( ph /\ ( Z e. ( Base ` E ) /\ M e. ( Z ( Hom ` E ) ( F ` X ) ) ) ) -> R : A --> B ) |
| 33 |
32
|
ffvelcdmda |
|- ( ( ( ph /\ ( Z e. ( Base ` E ) /\ M e. ( Z ( Hom ` E ) ( F ` X ) ) ) ) /\ x e. A ) -> ( R ` x ) e. B ) |
| 34 |
|
foelrn |
|- ( ( R : A -onto-> B /\ y e. B ) -> E. x e. A y = ( R ` x ) ) |
| 35 |
30 34
|
sylan |
|- ( ( ( ph /\ ( Z e. ( Base ` E ) /\ M e. ( Z ( Hom ` E ) ( F ` X ) ) ) ) /\ y e. B ) -> E. x e. A y = ( R ` x ) ) |
| 36 |
|
simp3 |
|- ( ( ( ph /\ ( Z e. ( Base ` E ) /\ M e. ( Z ( Hom ` E ) ( F ` X ) ) ) ) /\ x e. A /\ y = ( R ` x ) ) -> y = ( R ` x ) ) |
| 37 |
36
|
fveq2d |
|- ( ( ( ph /\ ( Z e. ( Base ` E ) /\ M e. ( Z ( Hom ` E ) ( F ` X ) ) ) ) /\ x e. A /\ y = ( R ` x ) ) -> ( K ` y ) = ( K ` ( R ` x ) ) ) |
| 38 |
|
simp1l |
|- ( ( ( ph /\ ( Z e. ( Base ` E ) /\ M e. ( Z ( Hom ` E ) ( F ` X ) ) ) ) /\ x e. A /\ y = ( R ` x ) ) -> ph ) |
| 39 |
38 23
|
syl |
|- ( ( ( ph /\ ( Z e. ( Base ` E ) /\ M e. ( Z ( Hom ` E ) ( F ` X ) ) ) ) /\ x e. A /\ y = ( R ` x ) ) -> R ( C Func D ) S ) |
| 40 |
8
|
adantr |
|- ( ( ph /\ ( Z e. ( Base ` E ) /\ M e. ( Z ( Hom ` E ) ( F ` X ) ) ) ) -> K ( D Func E ) L ) |
| 41 |
40
|
3ad2ant1 |
|- ( ( ( ph /\ ( Z e. ( Base ` E ) /\ M e. ( Z ( Hom ` E ) ( F ` X ) ) ) ) /\ x e. A /\ y = ( R ` x ) ) -> K ( D Func E ) L ) |
| 42 |
38 6
|
syl |
|- ( ( ( ph /\ ( Z e. ( Base ` E ) /\ M e. ( Z ( Hom ` E ) ( F ` X ) ) ) ) /\ x e. A /\ y = ( R ` x ) ) -> ( <. K , L >. o.func <. R , S >. ) = <. F , G >. ) |
| 43 |
|
simp2 |
|- ( ( ( ph /\ ( Z e. ( Base ` E ) /\ M e. ( Z ( Hom ` E ) ( F ` X ) ) ) ) /\ x e. A /\ y = ( R ` x ) ) -> x e. A ) |
| 44 |
1 39 41 42 43
|
cofu1a |
|- ( ( ( ph /\ ( Z e. ( Base ` E ) /\ M e. ( Z ( Hom ` E ) ( F ` X ) ) ) ) /\ x e. A /\ y = ( R ` x ) ) -> ( K ` ( R ` x ) ) = ( F ` x ) ) |
| 45 |
37 44
|
eqtrd |
|- ( ( ( ph /\ ( Z e. ( Base ` E ) /\ M e. ( Z ( Hom ` E ) ( F ` X ) ) ) ) /\ x e. A /\ y = ( R ` x ) ) -> ( K ` y ) = ( F ` x ) ) |
| 46 |
45
|
oveq2d |
|- ( ( ( ph /\ ( Z e. ( Base ` E ) /\ M e. ( Z ( Hom ` E ) ( F ` X ) ) ) ) /\ x e. A /\ y = ( R ` x ) ) -> ( Z ( Hom ` E ) ( K ` y ) ) = ( Z ( Hom ` E ) ( F ` x ) ) ) |
| 47 |
|
eqid |
|- ( Hom ` C ) = ( Hom ` C ) |
| 48 |
|
eqid |
|- ( Hom ` D ) = ( Hom ` D ) |
| 49 |
38 5
|
syl |
|- ( ( ( ph /\ ( Z e. ( Base ` E ) /\ M e. ( Z ( Hom ` E ) ( F ` X ) ) ) ) /\ x e. A /\ y = ( R ` x ) ) -> R ( ( C Full D ) i^i ( C Faith D ) ) S ) |
| 50 |
38 7
|
syl |
|- ( ( ( ph /\ ( Z e. ( Base ` E ) /\ M e. ( Z ( Hom ` E ) ( F ` X ) ) ) ) /\ x e. A /\ y = ( R ` x ) ) -> X e. A ) |
| 51 |
1 47 48 49 50 43
|
ffthf1o |
|- ( ( ( ph /\ ( Z e. ( Base ` E ) /\ M e. ( Z ( Hom ` E ) ( F ` X ) ) ) ) /\ x e. A /\ y = ( R ` x ) ) -> ( X S x ) : ( X ( Hom ` C ) x ) -1-1-onto-> ( ( R ` X ) ( Hom ` D ) ( R ` x ) ) ) |
| 52 |
38 3
|
syl |
|- ( ( ( ph /\ ( Z e. ( Base ` E ) /\ M e. ( Z ( Hom ` E ) ( F ` X ) ) ) ) /\ x e. A /\ y = ( R ` x ) ) -> Y = ( R ` X ) ) |
| 53 |
52 36
|
oveq12d |
|- ( ( ( ph /\ ( Z e. ( Base ` E ) /\ M e. ( Z ( Hom ` E ) ( F ` X ) ) ) ) /\ x e. A /\ y = ( R ` x ) ) -> ( Y ( Hom ` D ) y ) = ( ( R ` X ) ( Hom ` D ) ( R ` x ) ) ) |
| 54 |
53
|
f1oeq3d |
|- ( ( ( ph /\ ( Z e. ( Base ` E ) /\ M e. ( Z ( Hom ` E ) ( F ` X ) ) ) ) /\ x e. A /\ y = ( R ` x ) ) -> ( ( X S x ) : ( X ( Hom ` C ) x ) -1-1-onto-> ( Y ( Hom ` D ) y ) <-> ( X S x ) : ( X ( Hom ` C ) x ) -1-1-onto-> ( ( R ` X ) ( Hom ` D ) ( R ` x ) ) ) ) |
| 55 |
51 54
|
mpbird |
|- ( ( ( ph /\ ( Z e. ( Base ` E ) /\ M e. ( Z ( Hom ` E ) ( F ` X ) ) ) ) /\ x e. A /\ y = ( R ` x ) ) -> ( X S x ) : ( X ( Hom ` C ) x ) -1-1-onto-> ( Y ( Hom ` D ) y ) ) |
| 56 |
|
f1of |
|- ( ( X S x ) : ( X ( Hom ` C ) x ) -1-1-onto-> ( Y ( Hom ` D ) y ) -> ( X S x ) : ( X ( Hom ` C ) x ) --> ( Y ( Hom ` D ) y ) ) |
| 57 |
55 56
|
syl |
|- ( ( ( ph /\ ( Z e. ( Base ` E ) /\ M e. ( Z ( Hom ` E ) ( F ` X ) ) ) ) /\ x e. A /\ y = ( R ` x ) ) -> ( X S x ) : ( X ( Hom ` C ) x ) --> ( Y ( Hom ` D ) y ) ) |
| 58 |
57
|
ffvelcdmda |
|- ( ( ( ( ph /\ ( Z e. ( Base ` E ) /\ M e. ( Z ( Hom ` E ) ( F ` X ) ) ) ) /\ x e. A /\ y = ( R ` x ) ) /\ k e. ( X ( Hom ` C ) x ) ) -> ( ( X S x ) ` k ) e. ( Y ( Hom ` D ) y ) ) |
| 59 |
|
f1ofveu |
|- ( ( ( X S x ) : ( X ( Hom ` C ) x ) -1-1-onto-> ( Y ( Hom ` D ) y ) /\ l e. ( Y ( Hom ` D ) y ) ) -> E! k e. ( X ( Hom ` C ) x ) ( ( X S x ) ` k ) = l ) |
| 60 |
|
eqcom |
|- ( ( ( X S x ) ` k ) = l <-> l = ( ( X S x ) ` k ) ) |
| 61 |
60
|
reubii |
|- ( E! k e. ( X ( Hom ` C ) x ) ( ( X S x ) ` k ) = l <-> E! k e. ( X ( Hom ` C ) x ) l = ( ( X S x ) ` k ) ) |
| 62 |
59 61
|
sylib |
|- ( ( ( X S x ) : ( X ( Hom ` C ) x ) -1-1-onto-> ( Y ( Hom ` D ) y ) /\ l e. ( Y ( Hom ` D ) y ) ) -> E! k e. ( X ( Hom ` C ) x ) l = ( ( X S x ) ` k ) ) |
| 63 |
55 62
|
sylan |
|- ( ( ( ( ph /\ ( Z e. ( Base ` E ) /\ M e. ( Z ( Hom ` E ) ( F ` X ) ) ) ) /\ x e. A /\ y = ( R ` x ) ) /\ l e. ( Y ( Hom ` D ) y ) ) -> E! k e. ( X ( Hom ` C ) x ) l = ( ( X S x ) ` k ) ) |
| 64 |
38 25
|
syl |
|- ( ( ( ph /\ ( Z e. ( Base ` E ) /\ M e. ( Z ( Hom ` E ) ( F ` X ) ) ) ) /\ x e. A /\ y = ( R ` x ) ) -> ( K ` Y ) = ( F ` X ) ) |
| 65 |
64
|
opeq2d |
|- ( ( ( ph /\ ( Z e. ( Base ` E ) /\ M e. ( Z ( Hom ` E ) ( F ` X ) ) ) ) /\ x e. A /\ y = ( R ` x ) ) -> <. Z , ( K ` Y ) >. = <. Z , ( F ` X ) >. ) |
| 66 |
65 45
|
oveq12d |
|- ( ( ( ph /\ ( Z e. ( Base ` E ) /\ M e. ( Z ( Hom ` E ) ( F ` X ) ) ) ) /\ x e. A /\ y = ( R ` x ) ) -> ( <. Z , ( K ` Y ) >. ( comp ` E ) ( K ` y ) ) = ( <. Z , ( F ` X ) >. ( comp ` E ) ( F ` x ) ) ) |
| 67 |
66
|
adantr |
|- ( ( ( ( ph /\ ( Z e. ( Base ` E ) /\ M e. ( Z ( Hom ` E ) ( F ` X ) ) ) ) /\ x e. A /\ y = ( R ` x ) ) /\ ( k e. ( X ( Hom ` C ) x ) /\ l = ( ( X S x ) ` k ) ) ) -> ( <. Z , ( K ` Y ) >. ( comp ` E ) ( K ` y ) ) = ( <. Z , ( F ` X ) >. ( comp ` E ) ( F ` x ) ) ) |
| 68 |
52
|
adantr |
|- ( ( ( ( ph /\ ( Z e. ( Base ` E ) /\ M e. ( Z ( Hom ` E ) ( F ` X ) ) ) ) /\ x e. A /\ y = ( R ` x ) ) /\ ( k e. ( X ( Hom ` C ) x ) /\ l = ( ( X S x ) ` k ) ) ) -> Y = ( R ` X ) ) |
| 69 |
|
simpl3 |
|- ( ( ( ( ph /\ ( Z e. ( Base ` E ) /\ M e. ( Z ( Hom ` E ) ( F ` X ) ) ) ) /\ x e. A /\ y = ( R ` x ) ) /\ ( k e. ( X ( Hom ` C ) x ) /\ l = ( ( X S x ) ` k ) ) ) -> y = ( R ` x ) ) |
| 70 |
68 69
|
oveq12d |
|- ( ( ( ( ph /\ ( Z e. ( Base ` E ) /\ M e. ( Z ( Hom ` E ) ( F ` X ) ) ) ) /\ x e. A /\ y = ( R ` x ) ) /\ ( k e. ( X ( Hom ` C ) x ) /\ l = ( ( X S x ) ` k ) ) ) -> ( Y L y ) = ( ( R ` X ) L ( R ` x ) ) ) |
| 71 |
|
simprr |
|- ( ( ( ( ph /\ ( Z e. ( Base ` E ) /\ M e. ( Z ( Hom ` E ) ( F ` X ) ) ) ) /\ x e. A /\ y = ( R ` x ) ) /\ ( k e. ( X ( Hom ` C ) x ) /\ l = ( ( X S x ) ` k ) ) ) -> l = ( ( X S x ) ` k ) ) |
| 72 |
70 71
|
fveq12d |
|- ( ( ( ( ph /\ ( Z e. ( Base ` E ) /\ M e. ( Z ( Hom ` E ) ( F ` X ) ) ) ) /\ x e. A /\ y = ( R ` x ) ) /\ ( k e. ( X ( Hom ` C ) x ) /\ l = ( ( X S x ) ` k ) ) ) -> ( ( Y L y ) ` l ) = ( ( ( R ` X ) L ( R ` x ) ) ` ( ( X S x ) ` k ) ) ) |
| 73 |
39
|
adantr |
|- ( ( ( ( ph /\ ( Z e. ( Base ` E ) /\ M e. ( Z ( Hom ` E ) ( F ` X ) ) ) ) /\ x e. A /\ y = ( R ` x ) ) /\ ( k e. ( X ( Hom ` C ) x ) /\ l = ( ( X S x ) ` k ) ) ) -> R ( C Func D ) S ) |
| 74 |
41
|
adantr |
|- ( ( ( ( ph /\ ( Z e. ( Base ` E ) /\ M e. ( Z ( Hom ` E ) ( F ` X ) ) ) ) /\ x e. A /\ y = ( R ` x ) ) /\ ( k e. ( X ( Hom ` C ) x ) /\ l = ( ( X S x ) ` k ) ) ) -> K ( D Func E ) L ) |
| 75 |
42
|
adantr |
|- ( ( ( ( ph /\ ( Z e. ( Base ` E ) /\ M e. ( Z ( Hom ` E ) ( F ` X ) ) ) ) /\ x e. A /\ y = ( R ` x ) ) /\ ( k e. ( X ( Hom ` C ) x ) /\ l = ( ( X S x ) ` k ) ) ) -> ( <. K , L >. o.func <. R , S >. ) = <. F , G >. ) |
| 76 |
50
|
adantr |
|- ( ( ( ( ph /\ ( Z e. ( Base ` E ) /\ M e. ( Z ( Hom ` E ) ( F ` X ) ) ) ) /\ x e. A /\ y = ( R ` x ) ) /\ ( k e. ( X ( Hom ` C ) x ) /\ l = ( ( X S x ) ` k ) ) ) -> X e. A ) |
| 77 |
43
|
adantr |
|- ( ( ( ( ph /\ ( Z e. ( Base ` E ) /\ M e. ( Z ( Hom ` E ) ( F ` X ) ) ) ) /\ x e. A /\ y = ( R ` x ) ) /\ ( k e. ( X ( Hom ` C ) x ) /\ l = ( ( X S x ) ` k ) ) ) -> x e. A ) |
| 78 |
|
simprl |
|- ( ( ( ( ph /\ ( Z e. ( Base ` E ) /\ M e. ( Z ( Hom ` E ) ( F ` X ) ) ) ) /\ x e. A /\ y = ( R ` x ) ) /\ ( k e. ( X ( Hom ` C ) x ) /\ l = ( ( X S x ) ` k ) ) ) -> k e. ( X ( Hom ` C ) x ) ) |
| 79 |
1 73 74 75 76 77 47 78
|
cofu2a |
|- ( ( ( ( ph /\ ( Z e. ( Base ` E ) /\ M e. ( Z ( Hom ` E ) ( F ` X ) ) ) ) /\ x e. A /\ y = ( R ` x ) ) /\ ( k e. ( X ( Hom ` C ) x ) /\ l = ( ( X S x ) ` k ) ) ) -> ( ( ( R ` X ) L ( R ` x ) ) ` ( ( X S x ) ` k ) ) = ( ( X G x ) ` k ) ) |
| 80 |
72 79
|
eqtrd |
|- ( ( ( ( ph /\ ( Z e. ( Base ` E ) /\ M e. ( Z ( Hom ` E ) ( F ` X ) ) ) ) /\ x e. A /\ y = ( R ` x ) ) /\ ( k e. ( X ( Hom ` C ) x ) /\ l = ( ( X S x ) ` k ) ) ) -> ( ( Y L y ) ` l ) = ( ( X G x ) ` k ) ) |
| 81 |
|
eqidd |
|- ( ( ( ( ph /\ ( Z e. ( Base ` E ) /\ M e. ( Z ( Hom ` E ) ( F ` X ) ) ) ) /\ x e. A /\ y = ( R ` x ) ) /\ ( k e. ( X ( Hom ` C ) x ) /\ l = ( ( X S x ) ` k ) ) ) -> M = M ) |
| 82 |
67 80 81
|
oveq123d |
|- ( ( ( ( ph /\ ( Z e. ( Base ` E ) /\ M e. ( Z ( Hom ` E ) ( F ` X ) ) ) ) /\ x e. A /\ y = ( R ` x ) ) /\ ( k e. ( X ( Hom ` C ) x ) /\ l = ( ( X S x ) ` k ) ) ) -> ( ( ( Y L y ) ` l ) ( <. Z , ( K ` Y ) >. ( comp ` E ) ( K ` y ) ) M ) = ( ( ( X G x ) ` k ) ( <. Z , ( F ` X ) >. ( comp ` E ) ( F ` x ) ) M ) ) |
| 83 |
82
|
eqeq2d |
|- ( ( ( ( ph /\ ( Z e. ( Base ` E ) /\ M e. ( Z ( Hom ` E ) ( F ` X ) ) ) ) /\ x e. A /\ y = ( R ` x ) ) /\ ( k e. ( X ( Hom ` C ) x ) /\ l = ( ( X S x ) ` k ) ) ) -> ( g = ( ( ( Y L y ) ` l ) ( <. Z , ( K ` Y ) >. ( comp ` E ) ( K ` y ) ) M ) <-> g = ( ( ( X G x ) ` k ) ( <. Z , ( F ` X ) >. ( comp ` E ) ( F ` x ) ) M ) ) ) |
| 84 |
58 63 83
|
reuxfr1dd |
|- ( ( ( ph /\ ( Z e. ( Base ` E ) /\ M e. ( Z ( Hom ` E ) ( F ` X ) ) ) ) /\ x e. A /\ y = ( R ` x ) ) -> ( E! l e. ( Y ( Hom ` D ) y ) g = ( ( ( Y L y ) ` l ) ( <. Z , ( K ` Y ) >. ( comp ` E ) ( K ` y ) ) M ) <-> E! k e. ( X ( Hom ` C ) x ) g = ( ( ( X G x ) ` k ) ( <. Z , ( F ` X ) >. ( comp ` E ) ( F ` x ) ) M ) ) ) |
| 85 |
46 84
|
raleqbidv |
|- ( ( ( ph /\ ( Z e. ( Base ` E ) /\ M e. ( Z ( Hom ` E ) ( F ` X ) ) ) ) /\ x e. A /\ y = ( R ` x ) ) -> ( A. g e. ( Z ( Hom ` E ) ( K ` y ) ) E! l e. ( Y ( Hom ` D ) y ) g = ( ( ( Y L y ) ` l ) ( <. Z , ( K ` Y ) >. ( comp ` E ) ( K ` y ) ) M ) <-> A. g e. ( Z ( Hom ` E ) ( F ` x ) ) E! k e. ( X ( Hom ` C ) x ) g = ( ( ( X G x ) ` k ) ( <. Z , ( F ` X ) >. ( comp ` E ) ( F ` x ) ) M ) ) ) |
| 86 |
33 35 85
|
ralxfrd2 |
|- ( ( ph /\ ( Z e. ( Base ` E ) /\ M e. ( Z ( Hom ` E ) ( F ` X ) ) ) ) -> ( A. y e. B A. g e. ( Z ( Hom ` E ) ( K ` y ) ) E! l e. ( Y ( Hom ` D ) y ) g = ( ( ( Y L y ) ` l ) ( <. Z , ( K ` Y ) >. ( comp ` E ) ( K ` y ) ) M ) <-> A. x e. A A. g e. ( Z ( Hom ` E ) ( F ` x ) ) E! k e. ( X ( Hom ` C ) x ) g = ( ( ( X G x ) ` k ) ( <. Z , ( F ` X ) >. ( comp ` E ) ( F ` x ) ) M ) ) ) |
| 87 |
|
eqid |
|- ( comp ` E ) = ( comp ` E ) |
| 88 |
|
simprl |
|- ( ( ph /\ ( Z e. ( Base ` E ) /\ M e. ( Z ( Hom ` E ) ( F ` X ) ) ) ) -> Z e. ( Base ` E ) ) |
| 89 |
3
|
adantr |
|- ( ( ph /\ ( Z e. ( Base ` E ) /\ M e. ( Z ( Hom ` E ) ( F ` X ) ) ) ) -> Y = ( R ` X ) ) |
| 90 |
7
|
adantr |
|- ( ( ph /\ ( Z e. ( Base ` E ) /\ M e. ( Z ( Hom ` E ) ( F ` X ) ) ) ) -> X e. A ) |
| 91 |
32 90
|
ffvelcdmd |
|- ( ( ph /\ ( Z e. ( Base ` E ) /\ M e. ( Z ( Hom ` E ) ( F ` X ) ) ) ) -> ( R ` X ) e. B ) |
| 92 |
89 91
|
eqeltrd |
|- ( ( ph /\ ( Z e. ( Base ` E ) /\ M e. ( Z ( Hom ` E ) ( F ` X ) ) ) ) -> Y e. B ) |
| 93 |
|
simprr |
|- ( ( ph /\ ( Z e. ( Base ` E ) /\ M e. ( Z ( Hom ` E ) ( F ` X ) ) ) ) -> M e. ( Z ( Hom ` E ) ( F ` X ) ) ) |
| 94 |
26
|
adantr |
|- ( ( ph /\ ( Z e. ( Base ` E ) /\ M e. ( Z ( Hom ` E ) ( F ` X ) ) ) ) -> ( Z ( Hom ` E ) ( K ` Y ) ) = ( Z ( Hom ` E ) ( F ` X ) ) ) |
| 95 |
93 94
|
eleqtrrd |
|- ( ( ph /\ ( Z e. ( Base ` E ) /\ M e. ( Z ( Hom ` E ) ( F ` X ) ) ) ) -> M e. ( Z ( Hom ` E ) ( K ` Y ) ) ) |
| 96 |
2 10 48 12 87 88 40 92 95
|
isup |
|- ( ( ph /\ ( Z e. ( Base ` E ) /\ M e. ( Z ( Hom ` E ) ( F ` X ) ) ) ) -> ( Y ( <. K , L >. ( D UP E ) Z ) M <-> A. y e. B A. g e. ( Z ( Hom ` E ) ( K ` y ) ) E! l e. ( Y ( Hom ` D ) y ) g = ( ( ( Y L y ) ` l ) ( <. Z , ( K ` Y ) >. ( comp ` E ) ( K ` y ) ) M ) ) ) |
| 97 |
23 8
|
cofucla |
|- ( ph -> ( <. K , L >. o.func <. R , S >. ) e. ( C Func E ) ) |
| 98 |
6 97
|
eqeltrrd |
|- ( ph -> <. F , G >. e. ( C Func E ) ) |
| 99 |
|
df-br |
|- ( F ( C Func E ) G <-> <. F , G >. e. ( C Func E ) ) |
| 100 |
98 99
|
sylibr |
|- ( ph -> F ( C Func E ) G ) |
| 101 |
100
|
adantr |
|- ( ( ph /\ ( Z e. ( Base ` E ) /\ M e. ( Z ( Hom ` E ) ( F ` X ) ) ) ) -> F ( C Func E ) G ) |
| 102 |
1 10 47 12 87 88 101 90 93
|
isup |
|- ( ( ph /\ ( Z e. ( Base ` E ) /\ M e. ( Z ( Hom ` E ) ( F ` X ) ) ) ) -> ( X ( <. F , G >. ( C UP E ) Z ) M <-> A. x e. A A. g e. ( Z ( Hom ` E ) ( F ` x ) ) E! k e. ( X ( Hom ` C ) x ) g = ( ( ( X G x ) ` k ) ( <. Z , ( F ` X ) >. ( comp ` E ) ( F ` x ) ) M ) ) ) |
| 103 |
86 96 102
|
3bitr4rd |
|- ( ( ph /\ ( Z e. ( Base ` E ) /\ M e. ( Z ( Hom ` E ) ( F ` X ) ) ) ) -> ( X ( <. F , G >. ( C UP E ) Z ) M <-> Y ( <. K , L >. ( D UP E ) Z ) M ) ) |
| 104 |
14 29 103
|
bibiad |
|- ( ph -> ( X ( <. F , G >. ( C UP E ) Z ) M <-> Y ( <. K , L >. ( D UP E ) Z ) M ) ) |