| Step |
Hyp |
Ref |
Expression |
| 1 |
|
uptr2.a |
⊢ 𝐴 = ( Base ‘ 𝐶 ) |
| 2 |
|
uptr2.b |
⊢ 𝐵 = ( Base ‘ 𝐷 ) |
| 3 |
|
uptr2.y |
⊢ ( 𝜑 → 𝑌 = ( 𝑅 ‘ 𝑋 ) ) |
| 4 |
|
uptr2.r |
⊢ ( 𝜑 → 𝑅 : 𝐴 –onto→ 𝐵 ) |
| 5 |
|
uptr2.s |
⊢ ( 𝜑 → 𝑅 ( ( 𝐶 Full 𝐷 ) ∩ ( 𝐶 Faith 𝐷 ) ) 𝑆 ) |
| 6 |
|
uptr2.f |
⊢ ( 𝜑 → ( 〈 𝐾 , 𝐿 〉 ∘func 〈 𝑅 , 𝑆 〉 ) = 〈 𝐹 , 𝐺 〉 ) |
| 7 |
|
uptr2.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐴 ) |
| 8 |
|
uptr2.k |
⊢ ( 𝜑 → 𝐾 ( 𝐷 Func 𝐸 ) 𝐿 ) |
| 9 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑋 ( 〈 𝐹 , 𝐺 〉 ( 𝐶 UP 𝐸 ) 𝑍 ) 𝑀 ) → 𝑋 ( 〈 𝐹 , 𝐺 〉 ( 𝐶 UP 𝐸 ) 𝑍 ) 𝑀 ) |
| 10 |
|
eqid |
⊢ ( Base ‘ 𝐸 ) = ( Base ‘ 𝐸 ) |
| 11 |
9 10
|
uprcl3 |
⊢ ( ( 𝜑 ∧ 𝑋 ( 〈 𝐹 , 𝐺 〉 ( 𝐶 UP 𝐸 ) 𝑍 ) 𝑀 ) → 𝑍 ∈ ( Base ‘ 𝐸 ) ) |
| 12 |
|
eqid |
⊢ ( Hom ‘ 𝐸 ) = ( Hom ‘ 𝐸 ) |
| 13 |
9 12
|
uprcl5 |
⊢ ( ( 𝜑 ∧ 𝑋 ( 〈 𝐹 , 𝐺 〉 ( 𝐶 UP 𝐸 ) 𝑍 ) 𝑀 ) → 𝑀 ∈ ( 𝑍 ( Hom ‘ 𝐸 ) ( 𝐹 ‘ 𝑋 ) ) ) |
| 14 |
11 13
|
jca |
⊢ ( ( 𝜑 ∧ 𝑋 ( 〈 𝐹 , 𝐺 〉 ( 𝐶 UP 𝐸 ) 𝑍 ) 𝑀 ) → ( 𝑍 ∈ ( Base ‘ 𝐸 ) ∧ 𝑀 ∈ ( 𝑍 ( Hom ‘ 𝐸 ) ( 𝐹 ‘ 𝑋 ) ) ) ) |
| 15 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑌 ( 〈 𝐾 , 𝐿 〉 ( 𝐷 UP 𝐸 ) 𝑍 ) 𝑀 ) → 𝑌 ( 〈 𝐾 , 𝐿 〉 ( 𝐷 UP 𝐸 ) 𝑍 ) 𝑀 ) |
| 16 |
15 10
|
uprcl3 |
⊢ ( ( 𝜑 ∧ 𝑌 ( 〈 𝐾 , 𝐿 〉 ( 𝐷 UP 𝐸 ) 𝑍 ) 𝑀 ) → 𝑍 ∈ ( Base ‘ 𝐸 ) ) |
| 17 |
15 12
|
uprcl5 |
⊢ ( ( 𝜑 ∧ 𝑌 ( 〈 𝐾 , 𝐿 〉 ( 𝐷 UP 𝐸 ) 𝑍 ) 𝑀 ) → 𝑀 ∈ ( 𝑍 ( Hom ‘ 𝐸 ) ( 𝐾 ‘ 𝑌 ) ) ) |
| 18 |
3
|
fveq2d |
⊢ ( 𝜑 → ( 𝐾 ‘ 𝑌 ) = ( 𝐾 ‘ ( 𝑅 ‘ 𝑋 ) ) ) |
| 19 |
|
inss1 |
⊢ ( ( 𝐶 Full 𝐷 ) ∩ ( 𝐶 Faith 𝐷 ) ) ⊆ ( 𝐶 Full 𝐷 ) |
| 20 |
|
fullfunc |
⊢ ( 𝐶 Full 𝐷 ) ⊆ ( 𝐶 Func 𝐷 ) |
| 21 |
19 20
|
sstri |
⊢ ( ( 𝐶 Full 𝐷 ) ∩ ( 𝐶 Faith 𝐷 ) ) ⊆ ( 𝐶 Func 𝐷 ) |
| 22 |
21
|
ssbri |
⊢ ( 𝑅 ( ( 𝐶 Full 𝐷 ) ∩ ( 𝐶 Faith 𝐷 ) ) 𝑆 → 𝑅 ( 𝐶 Func 𝐷 ) 𝑆 ) |
| 23 |
5 22
|
syl |
⊢ ( 𝜑 → 𝑅 ( 𝐶 Func 𝐷 ) 𝑆 ) |
| 24 |
1 23 8 6 7
|
cofu1a |
⊢ ( 𝜑 → ( 𝐾 ‘ ( 𝑅 ‘ 𝑋 ) ) = ( 𝐹 ‘ 𝑋 ) ) |
| 25 |
18 24
|
eqtrd |
⊢ ( 𝜑 → ( 𝐾 ‘ 𝑌 ) = ( 𝐹 ‘ 𝑋 ) ) |
| 26 |
25
|
oveq2d |
⊢ ( 𝜑 → ( 𝑍 ( Hom ‘ 𝐸 ) ( 𝐾 ‘ 𝑌 ) ) = ( 𝑍 ( Hom ‘ 𝐸 ) ( 𝐹 ‘ 𝑋 ) ) ) |
| 27 |
26
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑌 ( 〈 𝐾 , 𝐿 〉 ( 𝐷 UP 𝐸 ) 𝑍 ) 𝑀 ) → ( 𝑍 ( Hom ‘ 𝐸 ) ( 𝐾 ‘ 𝑌 ) ) = ( 𝑍 ( Hom ‘ 𝐸 ) ( 𝐹 ‘ 𝑋 ) ) ) |
| 28 |
17 27
|
eleqtrd |
⊢ ( ( 𝜑 ∧ 𝑌 ( 〈 𝐾 , 𝐿 〉 ( 𝐷 UP 𝐸 ) 𝑍 ) 𝑀 ) → 𝑀 ∈ ( 𝑍 ( Hom ‘ 𝐸 ) ( 𝐹 ‘ 𝑋 ) ) ) |
| 29 |
16 28
|
jca |
⊢ ( ( 𝜑 ∧ 𝑌 ( 〈 𝐾 , 𝐿 〉 ( 𝐷 UP 𝐸 ) 𝑍 ) 𝑀 ) → ( 𝑍 ∈ ( Base ‘ 𝐸 ) ∧ 𝑀 ∈ ( 𝑍 ( Hom ‘ 𝐸 ) ( 𝐹 ‘ 𝑋 ) ) ) ) |
| 30 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑍 ∈ ( Base ‘ 𝐸 ) ∧ 𝑀 ∈ ( 𝑍 ( Hom ‘ 𝐸 ) ( 𝐹 ‘ 𝑋 ) ) ) ) → 𝑅 : 𝐴 –onto→ 𝐵 ) |
| 31 |
|
fof |
⊢ ( 𝑅 : 𝐴 –onto→ 𝐵 → 𝑅 : 𝐴 ⟶ 𝐵 ) |
| 32 |
30 31
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑍 ∈ ( Base ‘ 𝐸 ) ∧ 𝑀 ∈ ( 𝑍 ( Hom ‘ 𝐸 ) ( 𝐹 ‘ 𝑋 ) ) ) ) → 𝑅 : 𝐴 ⟶ 𝐵 ) |
| 33 |
32
|
ffvelcdmda |
⊢ ( ( ( 𝜑 ∧ ( 𝑍 ∈ ( Base ‘ 𝐸 ) ∧ 𝑀 ∈ ( 𝑍 ( Hom ‘ 𝐸 ) ( 𝐹 ‘ 𝑋 ) ) ) ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝑅 ‘ 𝑥 ) ∈ 𝐵 ) |
| 34 |
|
foelrn |
⊢ ( ( 𝑅 : 𝐴 –onto→ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ∃ 𝑥 ∈ 𝐴 𝑦 = ( 𝑅 ‘ 𝑥 ) ) |
| 35 |
30 34
|
sylan |
⊢ ( ( ( 𝜑 ∧ ( 𝑍 ∈ ( Base ‘ 𝐸 ) ∧ 𝑀 ∈ ( 𝑍 ( Hom ‘ 𝐸 ) ( 𝐹 ‘ 𝑋 ) ) ) ) ∧ 𝑦 ∈ 𝐵 ) → ∃ 𝑥 ∈ 𝐴 𝑦 = ( 𝑅 ‘ 𝑥 ) ) |
| 36 |
|
simp3 |
⊢ ( ( ( 𝜑 ∧ ( 𝑍 ∈ ( Base ‘ 𝐸 ) ∧ 𝑀 ∈ ( 𝑍 ( Hom ‘ 𝐸 ) ( 𝐹 ‘ 𝑋 ) ) ) ) ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 = ( 𝑅 ‘ 𝑥 ) ) → 𝑦 = ( 𝑅 ‘ 𝑥 ) ) |
| 37 |
36
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ ( 𝑍 ∈ ( Base ‘ 𝐸 ) ∧ 𝑀 ∈ ( 𝑍 ( Hom ‘ 𝐸 ) ( 𝐹 ‘ 𝑋 ) ) ) ) ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 = ( 𝑅 ‘ 𝑥 ) ) → ( 𝐾 ‘ 𝑦 ) = ( 𝐾 ‘ ( 𝑅 ‘ 𝑥 ) ) ) |
| 38 |
|
simp1l |
⊢ ( ( ( 𝜑 ∧ ( 𝑍 ∈ ( Base ‘ 𝐸 ) ∧ 𝑀 ∈ ( 𝑍 ( Hom ‘ 𝐸 ) ( 𝐹 ‘ 𝑋 ) ) ) ) ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 = ( 𝑅 ‘ 𝑥 ) ) → 𝜑 ) |
| 39 |
38 23
|
syl |
⊢ ( ( ( 𝜑 ∧ ( 𝑍 ∈ ( Base ‘ 𝐸 ) ∧ 𝑀 ∈ ( 𝑍 ( Hom ‘ 𝐸 ) ( 𝐹 ‘ 𝑋 ) ) ) ) ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 = ( 𝑅 ‘ 𝑥 ) ) → 𝑅 ( 𝐶 Func 𝐷 ) 𝑆 ) |
| 40 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑍 ∈ ( Base ‘ 𝐸 ) ∧ 𝑀 ∈ ( 𝑍 ( Hom ‘ 𝐸 ) ( 𝐹 ‘ 𝑋 ) ) ) ) → 𝐾 ( 𝐷 Func 𝐸 ) 𝐿 ) |
| 41 |
40
|
3ad2ant1 |
⊢ ( ( ( 𝜑 ∧ ( 𝑍 ∈ ( Base ‘ 𝐸 ) ∧ 𝑀 ∈ ( 𝑍 ( Hom ‘ 𝐸 ) ( 𝐹 ‘ 𝑋 ) ) ) ) ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 = ( 𝑅 ‘ 𝑥 ) ) → 𝐾 ( 𝐷 Func 𝐸 ) 𝐿 ) |
| 42 |
38 6
|
syl |
⊢ ( ( ( 𝜑 ∧ ( 𝑍 ∈ ( Base ‘ 𝐸 ) ∧ 𝑀 ∈ ( 𝑍 ( Hom ‘ 𝐸 ) ( 𝐹 ‘ 𝑋 ) ) ) ) ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 = ( 𝑅 ‘ 𝑥 ) ) → ( 〈 𝐾 , 𝐿 〉 ∘func 〈 𝑅 , 𝑆 〉 ) = 〈 𝐹 , 𝐺 〉 ) |
| 43 |
|
simp2 |
⊢ ( ( ( 𝜑 ∧ ( 𝑍 ∈ ( Base ‘ 𝐸 ) ∧ 𝑀 ∈ ( 𝑍 ( Hom ‘ 𝐸 ) ( 𝐹 ‘ 𝑋 ) ) ) ) ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 = ( 𝑅 ‘ 𝑥 ) ) → 𝑥 ∈ 𝐴 ) |
| 44 |
1 39 41 42 43
|
cofu1a |
⊢ ( ( ( 𝜑 ∧ ( 𝑍 ∈ ( Base ‘ 𝐸 ) ∧ 𝑀 ∈ ( 𝑍 ( Hom ‘ 𝐸 ) ( 𝐹 ‘ 𝑋 ) ) ) ) ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 = ( 𝑅 ‘ 𝑥 ) ) → ( 𝐾 ‘ ( 𝑅 ‘ 𝑥 ) ) = ( 𝐹 ‘ 𝑥 ) ) |
| 45 |
37 44
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑍 ∈ ( Base ‘ 𝐸 ) ∧ 𝑀 ∈ ( 𝑍 ( Hom ‘ 𝐸 ) ( 𝐹 ‘ 𝑋 ) ) ) ) ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 = ( 𝑅 ‘ 𝑥 ) ) → ( 𝐾 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑥 ) ) |
| 46 |
45
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ ( 𝑍 ∈ ( Base ‘ 𝐸 ) ∧ 𝑀 ∈ ( 𝑍 ( Hom ‘ 𝐸 ) ( 𝐹 ‘ 𝑋 ) ) ) ) ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 = ( 𝑅 ‘ 𝑥 ) ) → ( 𝑍 ( Hom ‘ 𝐸 ) ( 𝐾 ‘ 𝑦 ) ) = ( 𝑍 ( Hom ‘ 𝐸 ) ( 𝐹 ‘ 𝑥 ) ) ) |
| 47 |
|
eqid |
⊢ ( Hom ‘ 𝐶 ) = ( Hom ‘ 𝐶 ) |
| 48 |
|
eqid |
⊢ ( Hom ‘ 𝐷 ) = ( Hom ‘ 𝐷 ) |
| 49 |
38 5
|
syl |
⊢ ( ( ( 𝜑 ∧ ( 𝑍 ∈ ( Base ‘ 𝐸 ) ∧ 𝑀 ∈ ( 𝑍 ( Hom ‘ 𝐸 ) ( 𝐹 ‘ 𝑋 ) ) ) ) ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 = ( 𝑅 ‘ 𝑥 ) ) → 𝑅 ( ( 𝐶 Full 𝐷 ) ∩ ( 𝐶 Faith 𝐷 ) ) 𝑆 ) |
| 50 |
38 7
|
syl |
⊢ ( ( ( 𝜑 ∧ ( 𝑍 ∈ ( Base ‘ 𝐸 ) ∧ 𝑀 ∈ ( 𝑍 ( Hom ‘ 𝐸 ) ( 𝐹 ‘ 𝑋 ) ) ) ) ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 = ( 𝑅 ‘ 𝑥 ) ) → 𝑋 ∈ 𝐴 ) |
| 51 |
1 47 48 49 50 43
|
ffthf1o |
⊢ ( ( ( 𝜑 ∧ ( 𝑍 ∈ ( Base ‘ 𝐸 ) ∧ 𝑀 ∈ ( 𝑍 ( Hom ‘ 𝐸 ) ( 𝐹 ‘ 𝑋 ) ) ) ) ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 = ( 𝑅 ‘ 𝑥 ) ) → ( 𝑋 𝑆 𝑥 ) : ( 𝑋 ( Hom ‘ 𝐶 ) 𝑥 ) –1-1-onto→ ( ( 𝑅 ‘ 𝑋 ) ( Hom ‘ 𝐷 ) ( 𝑅 ‘ 𝑥 ) ) ) |
| 52 |
38 3
|
syl |
⊢ ( ( ( 𝜑 ∧ ( 𝑍 ∈ ( Base ‘ 𝐸 ) ∧ 𝑀 ∈ ( 𝑍 ( Hom ‘ 𝐸 ) ( 𝐹 ‘ 𝑋 ) ) ) ) ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 = ( 𝑅 ‘ 𝑥 ) ) → 𝑌 = ( 𝑅 ‘ 𝑋 ) ) |
| 53 |
52 36
|
oveq12d |
⊢ ( ( ( 𝜑 ∧ ( 𝑍 ∈ ( Base ‘ 𝐸 ) ∧ 𝑀 ∈ ( 𝑍 ( Hom ‘ 𝐸 ) ( 𝐹 ‘ 𝑋 ) ) ) ) ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 = ( 𝑅 ‘ 𝑥 ) ) → ( 𝑌 ( Hom ‘ 𝐷 ) 𝑦 ) = ( ( 𝑅 ‘ 𝑋 ) ( Hom ‘ 𝐷 ) ( 𝑅 ‘ 𝑥 ) ) ) |
| 54 |
53
|
f1oeq3d |
⊢ ( ( ( 𝜑 ∧ ( 𝑍 ∈ ( Base ‘ 𝐸 ) ∧ 𝑀 ∈ ( 𝑍 ( Hom ‘ 𝐸 ) ( 𝐹 ‘ 𝑋 ) ) ) ) ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 = ( 𝑅 ‘ 𝑥 ) ) → ( ( 𝑋 𝑆 𝑥 ) : ( 𝑋 ( Hom ‘ 𝐶 ) 𝑥 ) –1-1-onto→ ( 𝑌 ( Hom ‘ 𝐷 ) 𝑦 ) ↔ ( 𝑋 𝑆 𝑥 ) : ( 𝑋 ( Hom ‘ 𝐶 ) 𝑥 ) –1-1-onto→ ( ( 𝑅 ‘ 𝑋 ) ( Hom ‘ 𝐷 ) ( 𝑅 ‘ 𝑥 ) ) ) ) |
| 55 |
51 54
|
mpbird |
⊢ ( ( ( 𝜑 ∧ ( 𝑍 ∈ ( Base ‘ 𝐸 ) ∧ 𝑀 ∈ ( 𝑍 ( Hom ‘ 𝐸 ) ( 𝐹 ‘ 𝑋 ) ) ) ) ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 = ( 𝑅 ‘ 𝑥 ) ) → ( 𝑋 𝑆 𝑥 ) : ( 𝑋 ( Hom ‘ 𝐶 ) 𝑥 ) –1-1-onto→ ( 𝑌 ( Hom ‘ 𝐷 ) 𝑦 ) ) |
| 56 |
|
f1of |
⊢ ( ( 𝑋 𝑆 𝑥 ) : ( 𝑋 ( Hom ‘ 𝐶 ) 𝑥 ) –1-1-onto→ ( 𝑌 ( Hom ‘ 𝐷 ) 𝑦 ) → ( 𝑋 𝑆 𝑥 ) : ( 𝑋 ( Hom ‘ 𝐶 ) 𝑥 ) ⟶ ( 𝑌 ( Hom ‘ 𝐷 ) 𝑦 ) ) |
| 57 |
55 56
|
syl |
⊢ ( ( ( 𝜑 ∧ ( 𝑍 ∈ ( Base ‘ 𝐸 ) ∧ 𝑀 ∈ ( 𝑍 ( Hom ‘ 𝐸 ) ( 𝐹 ‘ 𝑋 ) ) ) ) ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 = ( 𝑅 ‘ 𝑥 ) ) → ( 𝑋 𝑆 𝑥 ) : ( 𝑋 ( Hom ‘ 𝐶 ) 𝑥 ) ⟶ ( 𝑌 ( Hom ‘ 𝐷 ) 𝑦 ) ) |
| 58 |
57
|
ffvelcdmda |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑍 ∈ ( Base ‘ 𝐸 ) ∧ 𝑀 ∈ ( 𝑍 ( Hom ‘ 𝐸 ) ( 𝐹 ‘ 𝑋 ) ) ) ) ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 = ( 𝑅 ‘ 𝑥 ) ) ∧ 𝑘 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑥 ) ) → ( ( 𝑋 𝑆 𝑥 ) ‘ 𝑘 ) ∈ ( 𝑌 ( Hom ‘ 𝐷 ) 𝑦 ) ) |
| 59 |
|
f1ofveu |
⊢ ( ( ( 𝑋 𝑆 𝑥 ) : ( 𝑋 ( Hom ‘ 𝐶 ) 𝑥 ) –1-1-onto→ ( 𝑌 ( Hom ‘ 𝐷 ) 𝑦 ) ∧ 𝑙 ∈ ( 𝑌 ( Hom ‘ 𝐷 ) 𝑦 ) ) → ∃! 𝑘 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑥 ) ( ( 𝑋 𝑆 𝑥 ) ‘ 𝑘 ) = 𝑙 ) |
| 60 |
|
eqcom |
⊢ ( ( ( 𝑋 𝑆 𝑥 ) ‘ 𝑘 ) = 𝑙 ↔ 𝑙 = ( ( 𝑋 𝑆 𝑥 ) ‘ 𝑘 ) ) |
| 61 |
60
|
reubii |
⊢ ( ∃! 𝑘 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑥 ) ( ( 𝑋 𝑆 𝑥 ) ‘ 𝑘 ) = 𝑙 ↔ ∃! 𝑘 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑥 ) 𝑙 = ( ( 𝑋 𝑆 𝑥 ) ‘ 𝑘 ) ) |
| 62 |
59 61
|
sylib |
⊢ ( ( ( 𝑋 𝑆 𝑥 ) : ( 𝑋 ( Hom ‘ 𝐶 ) 𝑥 ) –1-1-onto→ ( 𝑌 ( Hom ‘ 𝐷 ) 𝑦 ) ∧ 𝑙 ∈ ( 𝑌 ( Hom ‘ 𝐷 ) 𝑦 ) ) → ∃! 𝑘 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑥 ) 𝑙 = ( ( 𝑋 𝑆 𝑥 ) ‘ 𝑘 ) ) |
| 63 |
55 62
|
sylan |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑍 ∈ ( Base ‘ 𝐸 ) ∧ 𝑀 ∈ ( 𝑍 ( Hom ‘ 𝐸 ) ( 𝐹 ‘ 𝑋 ) ) ) ) ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 = ( 𝑅 ‘ 𝑥 ) ) ∧ 𝑙 ∈ ( 𝑌 ( Hom ‘ 𝐷 ) 𝑦 ) ) → ∃! 𝑘 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑥 ) 𝑙 = ( ( 𝑋 𝑆 𝑥 ) ‘ 𝑘 ) ) |
| 64 |
38 25
|
syl |
⊢ ( ( ( 𝜑 ∧ ( 𝑍 ∈ ( Base ‘ 𝐸 ) ∧ 𝑀 ∈ ( 𝑍 ( Hom ‘ 𝐸 ) ( 𝐹 ‘ 𝑋 ) ) ) ) ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 = ( 𝑅 ‘ 𝑥 ) ) → ( 𝐾 ‘ 𝑌 ) = ( 𝐹 ‘ 𝑋 ) ) |
| 65 |
64
|
opeq2d |
⊢ ( ( ( 𝜑 ∧ ( 𝑍 ∈ ( Base ‘ 𝐸 ) ∧ 𝑀 ∈ ( 𝑍 ( Hom ‘ 𝐸 ) ( 𝐹 ‘ 𝑋 ) ) ) ) ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 = ( 𝑅 ‘ 𝑥 ) ) → 〈 𝑍 , ( 𝐾 ‘ 𝑌 ) 〉 = 〈 𝑍 , ( 𝐹 ‘ 𝑋 ) 〉 ) |
| 66 |
65 45
|
oveq12d |
⊢ ( ( ( 𝜑 ∧ ( 𝑍 ∈ ( Base ‘ 𝐸 ) ∧ 𝑀 ∈ ( 𝑍 ( Hom ‘ 𝐸 ) ( 𝐹 ‘ 𝑋 ) ) ) ) ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 = ( 𝑅 ‘ 𝑥 ) ) → ( 〈 𝑍 , ( 𝐾 ‘ 𝑌 ) 〉 ( comp ‘ 𝐸 ) ( 𝐾 ‘ 𝑦 ) ) = ( 〈 𝑍 , ( 𝐹 ‘ 𝑋 ) 〉 ( comp ‘ 𝐸 ) ( 𝐹 ‘ 𝑥 ) ) ) |
| 67 |
66
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑍 ∈ ( Base ‘ 𝐸 ) ∧ 𝑀 ∈ ( 𝑍 ( Hom ‘ 𝐸 ) ( 𝐹 ‘ 𝑋 ) ) ) ) ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 = ( 𝑅 ‘ 𝑥 ) ) ∧ ( 𝑘 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑥 ) ∧ 𝑙 = ( ( 𝑋 𝑆 𝑥 ) ‘ 𝑘 ) ) ) → ( 〈 𝑍 , ( 𝐾 ‘ 𝑌 ) 〉 ( comp ‘ 𝐸 ) ( 𝐾 ‘ 𝑦 ) ) = ( 〈 𝑍 , ( 𝐹 ‘ 𝑋 ) 〉 ( comp ‘ 𝐸 ) ( 𝐹 ‘ 𝑥 ) ) ) |
| 68 |
52
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑍 ∈ ( Base ‘ 𝐸 ) ∧ 𝑀 ∈ ( 𝑍 ( Hom ‘ 𝐸 ) ( 𝐹 ‘ 𝑋 ) ) ) ) ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 = ( 𝑅 ‘ 𝑥 ) ) ∧ ( 𝑘 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑥 ) ∧ 𝑙 = ( ( 𝑋 𝑆 𝑥 ) ‘ 𝑘 ) ) ) → 𝑌 = ( 𝑅 ‘ 𝑋 ) ) |
| 69 |
|
simpl3 |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑍 ∈ ( Base ‘ 𝐸 ) ∧ 𝑀 ∈ ( 𝑍 ( Hom ‘ 𝐸 ) ( 𝐹 ‘ 𝑋 ) ) ) ) ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 = ( 𝑅 ‘ 𝑥 ) ) ∧ ( 𝑘 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑥 ) ∧ 𝑙 = ( ( 𝑋 𝑆 𝑥 ) ‘ 𝑘 ) ) ) → 𝑦 = ( 𝑅 ‘ 𝑥 ) ) |
| 70 |
68 69
|
oveq12d |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑍 ∈ ( Base ‘ 𝐸 ) ∧ 𝑀 ∈ ( 𝑍 ( Hom ‘ 𝐸 ) ( 𝐹 ‘ 𝑋 ) ) ) ) ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 = ( 𝑅 ‘ 𝑥 ) ) ∧ ( 𝑘 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑥 ) ∧ 𝑙 = ( ( 𝑋 𝑆 𝑥 ) ‘ 𝑘 ) ) ) → ( 𝑌 𝐿 𝑦 ) = ( ( 𝑅 ‘ 𝑋 ) 𝐿 ( 𝑅 ‘ 𝑥 ) ) ) |
| 71 |
|
simprr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑍 ∈ ( Base ‘ 𝐸 ) ∧ 𝑀 ∈ ( 𝑍 ( Hom ‘ 𝐸 ) ( 𝐹 ‘ 𝑋 ) ) ) ) ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 = ( 𝑅 ‘ 𝑥 ) ) ∧ ( 𝑘 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑥 ) ∧ 𝑙 = ( ( 𝑋 𝑆 𝑥 ) ‘ 𝑘 ) ) ) → 𝑙 = ( ( 𝑋 𝑆 𝑥 ) ‘ 𝑘 ) ) |
| 72 |
70 71
|
fveq12d |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑍 ∈ ( Base ‘ 𝐸 ) ∧ 𝑀 ∈ ( 𝑍 ( Hom ‘ 𝐸 ) ( 𝐹 ‘ 𝑋 ) ) ) ) ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 = ( 𝑅 ‘ 𝑥 ) ) ∧ ( 𝑘 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑥 ) ∧ 𝑙 = ( ( 𝑋 𝑆 𝑥 ) ‘ 𝑘 ) ) ) → ( ( 𝑌 𝐿 𝑦 ) ‘ 𝑙 ) = ( ( ( 𝑅 ‘ 𝑋 ) 𝐿 ( 𝑅 ‘ 𝑥 ) ) ‘ ( ( 𝑋 𝑆 𝑥 ) ‘ 𝑘 ) ) ) |
| 73 |
39
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑍 ∈ ( Base ‘ 𝐸 ) ∧ 𝑀 ∈ ( 𝑍 ( Hom ‘ 𝐸 ) ( 𝐹 ‘ 𝑋 ) ) ) ) ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 = ( 𝑅 ‘ 𝑥 ) ) ∧ ( 𝑘 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑥 ) ∧ 𝑙 = ( ( 𝑋 𝑆 𝑥 ) ‘ 𝑘 ) ) ) → 𝑅 ( 𝐶 Func 𝐷 ) 𝑆 ) |
| 74 |
41
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑍 ∈ ( Base ‘ 𝐸 ) ∧ 𝑀 ∈ ( 𝑍 ( Hom ‘ 𝐸 ) ( 𝐹 ‘ 𝑋 ) ) ) ) ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 = ( 𝑅 ‘ 𝑥 ) ) ∧ ( 𝑘 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑥 ) ∧ 𝑙 = ( ( 𝑋 𝑆 𝑥 ) ‘ 𝑘 ) ) ) → 𝐾 ( 𝐷 Func 𝐸 ) 𝐿 ) |
| 75 |
42
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑍 ∈ ( Base ‘ 𝐸 ) ∧ 𝑀 ∈ ( 𝑍 ( Hom ‘ 𝐸 ) ( 𝐹 ‘ 𝑋 ) ) ) ) ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 = ( 𝑅 ‘ 𝑥 ) ) ∧ ( 𝑘 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑥 ) ∧ 𝑙 = ( ( 𝑋 𝑆 𝑥 ) ‘ 𝑘 ) ) ) → ( 〈 𝐾 , 𝐿 〉 ∘func 〈 𝑅 , 𝑆 〉 ) = 〈 𝐹 , 𝐺 〉 ) |
| 76 |
50
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑍 ∈ ( Base ‘ 𝐸 ) ∧ 𝑀 ∈ ( 𝑍 ( Hom ‘ 𝐸 ) ( 𝐹 ‘ 𝑋 ) ) ) ) ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 = ( 𝑅 ‘ 𝑥 ) ) ∧ ( 𝑘 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑥 ) ∧ 𝑙 = ( ( 𝑋 𝑆 𝑥 ) ‘ 𝑘 ) ) ) → 𝑋 ∈ 𝐴 ) |
| 77 |
43
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑍 ∈ ( Base ‘ 𝐸 ) ∧ 𝑀 ∈ ( 𝑍 ( Hom ‘ 𝐸 ) ( 𝐹 ‘ 𝑋 ) ) ) ) ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 = ( 𝑅 ‘ 𝑥 ) ) ∧ ( 𝑘 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑥 ) ∧ 𝑙 = ( ( 𝑋 𝑆 𝑥 ) ‘ 𝑘 ) ) ) → 𝑥 ∈ 𝐴 ) |
| 78 |
|
simprl |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑍 ∈ ( Base ‘ 𝐸 ) ∧ 𝑀 ∈ ( 𝑍 ( Hom ‘ 𝐸 ) ( 𝐹 ‘ 𝑋 ) ) ) ) ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 = ( 𝑅 ‘ 𝑥 ) ) ∧ ( 𝑘 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑥 ) ∧ 𝑙 = ( ( 𝑋 𝑆 𝑥 ) ‘ 𝑘 ) ) ) → 𝑘 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑥 ) ) |
| 79 |
1 73 74 75 76 77 47 78
|
cofu2a |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑍 ∈ ( Base ‘ 𝐸 ) ∧ 𝑀 ∈ ( 𝑍 ( Hom ‘ 𝐸 ) ( 𝐹 ‘ 𝑋 ) ) ) ) ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 = ( 𝑅 ‘ 𝑥 ) ) ∧ ( 𝑘 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑥 ) ∧ 𝑙 = ( ( 𝑋 𝑆 𝑥 ) ‘ 𝑘 ) ) ) → ( ( ( 𝑅 ‘ 𝑋 ) 𝐿 ( 𝑅 ‘ 𝑥 ) ) ‘ ( ( 𝑋 𝑆 𝑥 ) ‘ 𝑘 ) ) = ( ( 𝑋 𝐺 𝑥 ) ‘ 𝑘 ) ) |
| 80 |
72 79
|
eqtrd |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑍 ∈ ( Base ‘ 𝐸 ) ∧ 𝑀 ∈ ( 𝑍 ( Hom ‘ 𝐸 ) ( 𝐹 ‘ 𝑋 ) ) ) ) ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 = ( 𝑅 ‘ 𝑥 ) ) ∧ ( 𝑘 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑥 ) ∧ 𝑙 = ( ( 𝑋 𝑆 𝑥 ) ‘ 𝑘 ) ) ) → ( ( 𝑌 𝐿 𝑦 ) ‘ 𝑙 ) = ( ( 𝑋 𝐺 𝑥 ) ‘ 𝑘 ) ) |
| 81 |
|
eqidd |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑍 ∈ ( Base ‘ 𝐸 ) ∧ 𝑀 ∈ ( 𝑍 ( Hom ‘ 𝐸 ) ( 𝐹 ‘ 𝑋 ) ) ) ) ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 = ( 𝑅 ‘ 𝑥 ) ) ∧ ( 𝑘 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑥 ) ∧ 𝑙 = ( ( 𝑋 𝑆 𝑥 ) ‘ 𝑘 ) ) ) → 𝑀 = 𝑀 ) |
| 82 |
67 80 81
|
oveq123d |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑍 ∈ ( Base ‘ 𝐸 ) ∧ 𝑀 ∈ ( 𝑍 ( Hom ‘ 𝐸 ) ( 𝐹 ‘ 𝑋 ) ) ) ) ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 = ( 𝑅 ‘ 𝑥 ) ) ∧ ( 𝑘 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑥 ) ∧ 𝑙 = ( ( 𝑋 𝑆 𝑥 ) ‘ 𝑘 ) ) ) → ( ( ( 𝑌 𝐿 𝑦 ) ‘ 𝑙 ) ( 〈 𝑍 , ( 𝐾 ‘ 𝑌 ) 〉 ( comp ‘ 𝐸 ) ( 𝐾 ‘ 𝑦 ) ) 𝑀 ) = ( ( ( 𝑋 𝐺 𝑥 ) ‘ 𝑘 ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑋 ) 〉 ( comp ‘ 𝐸 ) ( 𝐹 ‘ 𝑥 ) ) 𝑀 ) ) |
| 83 |
82
|
eqeq2d |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑍 ∈ ( Base ‘ 𝐸 ) ∧ 𝑀 ∈ ( 𝑍 ( Hom ‘ 𝐸 ) ( 𝐹 ‘ 𝑋 ) ) ) ) ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 = ( 𝑅 ‘ 𝑥 ) ) ∧ ( 𝑘 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑥 ) ∧ 𝑙 = ( ( 𝑋 𝑆 𝑥 ) ‘ 𝑘 ) ) ) → ( 𝑔 = ( ( ( 𝑌 𝐿 𝑦 ) ‘ 𝑙 ) ( 〈 𝑍 , ( 𝐾 ‘ 𝑌 ) 〉 ( comp ‘ 𝐸 ) ( 𝐾 ‘ 𝑦 ) ) 𝑀 ) ↔ 𝑔 = ( ( ( 𝑋 𝐺 𝑥 ) ‘ 𝑘 ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑋 ) 〉 ( comp ‘ 𝐸 ) ( 𝐹 ‘ 𝑥 ) ) 𝑀 ) ) ) |
| 84 |
58 63 83
|
reuxfr1dd |
⊢ ( ( ( 𝜑 ∧ ( 𝑍 ∈ ( Base ‘ 𝐸 ) ∧ 𝑀 ∈ ( 𝑍 ( Hom ‘ 𝐸 ) ( 𝐹 ‘ 𝑋 ) ) ) ) ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 = ( 𝑅 ‘ 𝑥 ) ) → ( ∃! 𝑙 ∈ ( 𝑌 ( Hom ‘ 𝐷 ) 𝑦 ) 𝑔 = ( ( ( 𝑌 𝐿 𝑦 ) ‘ 𝑙 ) ( 〈 𝑍 , ( 𝐾 ‘ 𝑌 ) 〉 ( comp ‘ 𝐸 ) ( 𝐾 ‘ 𝑦 ) ) 𝑀 ) ↔ ∃! 𝑘 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑥 ) 𝑔 = ( ( ( 𝑋 𝐺 𝑥 ) ‘ 𝑘 ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑋 ) 〉 ( comp ‘ 𝐸 ) ( 𝐹 ‘ 𝑥 ) ) 𝑀 ) ) ) |
| 85 |
46 84
|
raleqbidv |
⊢ ( ( ( 𝜑 ∧ ( 𝑍 ∈ ( Base ‘ 𝐸 ) ∧ 𝑀 ∈ ( 𝑍 ( Hom ‘ 𝐸 ) ( 𝐹 ‘ 𝑋 ) ) ) ) ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 = ( 𝑅 ‘ 𝑥 ) ) → ( ∀ 𝑔 ∈ ( 𝑍 ( Hom ‘ 𝐸 ) ( 𝐾 ‘ 𝑦 ) ) ∃! 𝑙 ∈ ( 𝑌 ( Hom ‘ 𝐷 ) 𝑦 ) 𝑔 = ( ( ( 𝑌 𝐿 𝑦 ) ‘ 𝑙 ) ( 〈 𝑍 , ( 𝐾 ‘ 𝑌 ) 〉 ( comp ‘ 𝐸 ) ( 𝐾 ‘ 𝑦 ) ) 𝑀 ) ↔ ∀ 𝑔 ∈ ( 𝑍 ( Hom ‘ 𝐸 ) ( 𝐹 ‘ 𝑥 ) ) ∃! 𝑘 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑥 ) 𝑔 = ( ( ( 𝑋 𝐺 𝑥 ) ‘ 𝑘 ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑋 ) 〉 ( comp ‘ 𝐸 ) ( 𝐹 ‘ 𝑥 ) ) 𝑀 ) ) ) |
| 86 |
33 35 85
|
ralxfrd2 |
⊢ ( ( 𝜑 ∧ ( 𝑍 ∈ ( Base ‘ 𝐸 ) ∧ 𝑀 ∈ ( 𝑍 ( Hom ‘ 𝐸 ) ( 𝐹 ‘ 𝑋 ) ) ) ) → ( ∀ 𝑦 ∈ 𝐵 ∀ 𝑔 ∈ ( 𝑍 ( Hom ‘ 𝐸 ) ( 𝐾 ‘ 𝑦 ) ) ∃! 𝑙 ∈ ( 𝑌 ( Hom ‘ 𝐷 ) 𝑦 ) 𝑔 = ( ( ( 𝑌 𝐿 𝑦 ) ‘ 𝑙 ) ( 〈 𝑍 , ( 𝐾 ‘ 𝑌 ) 〉 ( comp ‘ 𝐸 ) ( 𝐾 ‘ 𝑦 ) ) 𝑀 ) ↔ ∀ 𝑥 ∈ 𝐴 ∀ 𝑔 ∈ ( 𝑍 ( Hom ‘ 𝐸 ) ( 𝐹 ‘ 𝑥 ) ) ∃! 𝑘 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑥 ) 𝑔 = ( ( ( 𝑋 𝐺 𝑥 ) ‘ 𝑘 ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑋 ) 〉 ( comp ‘ 𝐸 ) ( 𝐹 ‘ 𝑥 ) ) 𝑀 ) ) ) |
| 87 |
|
eqid |
⊢ ( comp ‘ 𝐸 ) = ( comp ‘ 𝐸 ) |
| 88 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑍 ∈ ( Base ‘ 𝐸 ) ∧ 𝑀 ∈ ( 𝑍 ( Hom ‘ 𝐸 ) ( 𝐹 ‘ 𝑋 ) ) ) ) → 𝑍 ∈ ( Base ‘ 𝐸 ) ) |
| 89 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑍 ∈ ( Base ‘ 𝐸 ) ∧ 𝑀 ∈ ( 𝑍 ( Hom ‘ 𝐸 ) ( 𝐹 ‘ 𝑋 ) ) ) ) → 𝑌 = ( 𝑅 ‘ 𝑋 ) ) |
| 90 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑍 ∈ ( Base ‘ 𝐸 ) ∧ 𝑀 ∈ ( 𝑍 ( Hom ‘ 𝐸 ) ( 𝐹 ‘ 𝑋 ) ) ) ) → 𝑋 ∈ 𝐴 ) |
| 91 |
32 90
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ ( 𝑍 ∈ ( Base ‘ 𝐸 ) ∧ 𝑀 ∈ ( 𝑍 ( Hom ‘ 𝐸 ) ( 𝐹 ‘ 𝑋 ) ) ) ) → ( 𝑅 ‘ 𝑋 ) ∈ 𝐵 ) |
| 92 |
89 91
|
eqeltrd |
⊢ ( ( 𝜑 ∧ ( 𝑍 ∈ ( Base ‘ 𝐸 ) ∧ 𝑀 ∈ ( 𝑍 ( Hom ‘ 𝐸 ) ( 𝐹 ‘ 𝑋 ) ) ) ) → 𝑌 ∈ 𝐵 ) |
| 93 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑍 ∈ ( Base ‘ 𝐸 ) ∧ 𝑀 ∈ ( 𝑍 ( Hom ‘ 𝐸 ) ( 𝐹 ‘ 𝑋 ) ) ) ) → 𝑀 ∈ ( 𝑍 ( Hom ‘ 𝐸 ) ( 𝐹 ‘ 𝑋 ) ) ) |
| 94 |
26
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑍 ∈ ( Base ‘ 𝐸 ) ∧ 𝑀 ∈ ( 𝑍 ( Hom ‘ 𝐸 ) ( 𝐹 ‘ 𝑋 ) ) ) ) → ( 𝑍 ( Hom ‘ 𝐸 ) ( 𝐾 ‘ 𝑌 ) ) = ( 𝑍 ( Hom ‘ 𝐸 ) ( 𝐹 ‘ 𝑋 ) ) ) |
| 95 |
93 94
|
eleqtrrd |
⊢ ( ( 𝜑 ∧ ( 𝑍 ∈ ( Base ‘ 𝐸 ) ∧ 𝑀 ∈ ( 𝑍 ( Hom ‘ 𝐸 ) ( 𝐹 ‘ 𝑋 ) ) ) ) → 𝑀 ∈ ( 𝑍 ( Hom ‘ 𝐸 ) ( 𝐾 ‘ 𝑌 ) ) ) |
| 96 |
2 10 48 12 87 88 40 92 95
|
isup |
⊢ ( ( 𝜑 ∧ ( 𝑍 ∈ ( Base ‘ 𝐸 ) ∧ 𝑀 ∈ ( 𝑍 ( Hom ‘ 𝐸 ) ( 𝐹 ‘ 𝑋 ) ) ) ) → ( 𝑌 ( 〈 𝐾 , 𝐿 〉 ( 𝐷 UP 𝐸 ) 𝑍 ) 𝑀 ↔ ∀ 𝑦 ∈ 𝐵 ∀ 𝑔 ∈ ( 𝑍 ( Hom ‘ 𝐸 ) ( 𝐾 ‘ 𝑦 ) ) ∃! 𝑙 ∈ ( 𝑌 ( Hom ‘ 𝐷 ) 𝑦 ) 𝑔 = ( ( ( 𝑌 𝐿 𝑦 ) ‘ 𝑙 ) ( 〈 𝑍 , ( 𝐾 ‘ 𝑌 ) 〉 ( comp ‘ 𝐸 ) ( 𝐾 ‘ 𝑦 ) ) 𝑀 ) ) ) |
| 97 |
23 8
|
cofucla |
⊢ ( 𝜑 → ( 〈 𝐾 , 𝐿 〉 ∘func 〈 𝑅 , 𝑆 〉 ) ∈ ( 𝐶 Func 𝐸 ) ) |
| 98 |
6 97
|
eqeltrrd |
⊢ ( 𝜑 → 〈 𝐹 , 𝐺 〉 ∈ ( 𝐶 Func 𝐸 ) ) |
| 99 |
|
df-br |
⊢ ( 𝐹 ( 𝐶 Func 𝐸 ) 𝐺 ↔ 〈 𝐹 , 𝐺 〉 ∈ ( 𝐶 Func 𝐸 ) ) |
| 100 |
98 99
|
sylibr |
⊢ ( 𝜑 → 𝐹 ( 𝐶 Func 𝐸 ) 𝐺 ) |
| 101 |
100
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑍 ∈ ( Base ‘ 𝐸 ) ∧ 𝑀 ∈ ( 𝑍 ( Hom ‘ 𝐸 ) ( 𝐹 ‘ 𝑋 ) ) ) ) → 𝐹 ( 𝐶 Func 𝐸 ) 𝐺 ) |
| 102 |
1 10 47 12 87 88 101 90 93
|
isup |
⊢ ( ( 𝜑 ∧ ( 𝑍 ∈ ( Base ‘ 𝐸 ) ∧ 𝑀 ∈ ( 𝑍 ( Hom ‘ 𝐸 ) ( 𝐹 ‘ 𝑋 ) ) ) ) → ( 𝑋 ( 〈 𝐹 , 𝐺 〉 ( 𝐶 UP 𝐸 ) 𝑍 ) 𝑀 ↔ ∀ 𝑥 ∈ 𝐴 ∀ 𝑔 ∈ ( 𝑍 ( Hom ‘ 𝐸 ) ( 𝐹 ‘ 𝑥 ) ) ∃! 𝑘 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑥 ) 𝑔 = ( ( ( 𝑋 𝐺 𝑥 ) ‘ 𝑘 ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑋 ) 〉 ( comp ‘ 𝐸 ) ( 𝐹 ‘ 𝑥 ) ) 𝑀 ) ) ) |
| 103 |
86 96 102
|
3bitr4rd |
⊢ ( ( 𝜑 ∧ ( 𝑍 ∈ ( Base ‘ 𝐸 ) ∧ 𝑀 ∈ ( 𝑍 ( Hom ‘ 𝐸 ) ( 𝐹 ‘ 𝑋 ) ) ) ) → ( 𝑋 ( 〈 𝐹 , 𝐺 〉 ( 𝐶 UP 𝐸 ) 𝑍 ) 𝑀 ↔ 𝑌 ( 〈 𝐾 , 𝐿 〉 ( 𝐷 UP 𝐸 ) 𝑍 ) 𝑀 ) ) |
| 104 |
14 29 103
|
bibiad |
⊢ ( 𝜑 → ( 𝑋 ( 〈 𝐹 , 𝐺 〉 ( 𝐶 UP 𝐸 ) 𝑍 ) 𝑀 ↔ 𝑌 ( 〈 𝐾 , 𝐿 〉 ( 𝐷 UP 𝐸 ) 𝑍 ) 𝑀 ) ) |