Metamath Proof Explorer


Theorem uptr2a

Description: Universal property and fully faithful functor surjective on objects. (Contributed by Zhi Wang, 25-Nov-2025)

Ref Expression
Hypotheses uptr2a.a A = Base C
uptr2a.b B = Base D
uptr2a.y φ Y = 1 st K X
uptr2a.f φ G func K = F
uptr2a.x φ X A
uptr2a.g φ G D Func E
uptr2a.k φ K C Full D C Faith D
uptr2a.1 φ 1 st K : A onto B
Assertion uptr2a Could not format assertion : No typesetting found for |- ( ph -> ( X ( F ( C UP E ) Z ) M <-> Y ( G ( D UP E ) Z ) M ) ) with typecode |-

Proof

Step Hyp Ref Expression
1 uptr2a.a A = Base C
2 uptr2a.b B = Base D
3 uptr2a.y φ Y = 1 st K X
4 uptr2a.f φ G func K = F
5 uptr2a.x φ X A
6 uptr2a.g φ G D Func E
7 uptr2a.k φ K C Full D C Faith D
8 uptr2a.1 φ 1 st K : A onto B
9 relfull Rel C Full D
10 relin1 Rel C Full D Rel C Full D C Faith D
11 9 10 ax-mp Rel C Full D C Faith D
12 1st2ndbr Rel C Full D C Faith D K C Full D C Faith D 1 st K C Full D C Faith D 2 nd K
13 11 7 12 sylancr φ 1 st K C Full D C Faith D 2 nd K
14 inss1 C Full D C Faith D C Full D
15 fullfunc C Full D C Func D
16 14 15 sstri C Full D C Faith D C Func D
17 16 7 sselid φ K C Func D
18 17 6 cofu1st2nd φ G func K = 1 st G 2 nd G func 1 st K 2 nd K
19 relfunc Rel C Func E
20 17 6 cofucl φ G func K C Func E
21 4 20 eqeltrrd φ F C Func E
22 1st2nd Rel C Func E F C Func E F = 1 st F 2 nd F
23 19 21 22 sylancr φ F = 1 st F 2 nd F
24 4 18 23 3eqtr3d φ 1 st G 2 nd G func 1 st K 2 nd K = 1 st F 2 nd F
25 6 func1st2nd φ 1 st G D Func E 2 nd G
26 1 2 3 8 13 24 5 25 uptr2 Could not format ( ph -> ( X ( <. ( 1st ` F ) , ( 2nd ` F ) >. ( C UP E ) Z ) M <-> Y ( <. ( 1st ` G ) , ( 2nd ` G ) >. ( D UP E ) Z ) M ) ) : No typesetting found for |- ( ph -> ( X ( <. ( 1st ` F ) , ( 2nd ` F ) >. ( C UP E ) Z ) M <-> Y ( <. ( 1st ` G ) , ( 2nd ` G ) >. ( D UP E ) Z ) M ) ) with typecode |-
27 21 up1st2ndb Could not format ( ph -> ( X ( F ( C UP E ) Z ) M <-> X ( <. ( 1st ` F ) , ( 2nd ` F ) >. ( C UP E ) Z ) M ) ) : No typesetting found for |- ( ph -> ( X ( F ( C UP E ) Z ) M <-> X ( <. ( 1st ` F ) , ( 2nd ` F ) >. ( C UP E ) Z ) M ) ) with typecode |-
28 6 up1st2ndb Could not format ( ph -> ( Y ( G ( D UP E ) Z ) M <-> Y ( <. ( 1st ` G ) , ( 2nd ` G ) >. ( D UP E ) Z ) M ) ) : No typesetting found for |- ( ph -> ( Y ( G ( D UP E ) Z ) M <-> Y ( <. ( 1st ` G ) , ( 2nd ` G ) >. ( D UP E ) Z ) M ) ) with typecode |-
29 26 27 28 3bitr4d Could not format ( ph -> ( X ( F ( C UP E ) Z ) M <-> Y ( G ( D UP E ) Z ) M ) ) : No typesetting found for |- ( ph -> ( X ( F ( C UP E ) Z ) M <-> Y ( G ( D UP E ) Z ) M ) ) with typecode |-