| Step | Hyp | Ref | Expression | 
						
							| 1 |  | wun0.1 |  |-  ( ph -> U e. WUni ) | 
						
							| 2 |  | fveq2 |  |-  ( x = (/) -> ( R1 ` x ) = ( R1 ` (/) ) ) | 
						
							| 3 | 2 | eleq1d |  |-  ( x = (/) -> ( ( R1 ` x ) e. U <-> ( R1 ` (/) ) e. U ) ) | 
						
							| 4 |  | fveq2 |  |-  ( x = y -> ( R1 ` x ) = ( R1 ` y ) ) | 
						
							| 5 | 4 | eleq1d |  |-  ( x = y -> ( ( R1 ` x ) e. U <-> ( R1 ` y ) e. U ) ) | 
						
							| 6 |  | fveq2 |  |-  ( x = suc y -> ( R1 ` x ) = ( R1 ` suc y ) ) | 
						
							| 7 | 6 | eleq1d |  |-  ( x = suc y -> ( ( R1 ` x ) e. U <-> ( R1 ` suc y ) e. U ) ) | 
						
							| 8 |  | r10 |  |-  ( R1 ` (/) ) = (/) | 
						
							| 9 | 1 | wun0 |  |-  ( ph -> (/) e. U ) | 
						
							| 10 | 8 9 | eqeltrid |  |-  ( ph -> ( R1 ` (/) ) e. U ) | 
						
							| 11 | 1 | adantr |  |-  ( ( ph /\ ( R1 ` y ) e. U ) -> U e. WUni ) | 
						
							| 12 |  | simpr |  |-  ( ( ph /\ ( R1 ` y ) e. U ) -> ( R1 ` y ) e. U ) | 
						
							| 13 | 11 12 | wunpw |  |-  ( ( ph /\ ( R1 ` y ) e. U ) -> ~P ( R1 ` y ) e. U ) | 
						
							| 14 |  | nnon |  |-  ( y e. _om -> y e. On ) | 
						
							| 15 |  | r1suc |  |-  ( y e. On -> ( R1 ` suc y ) = ~P ( R1 ` y ) ) | 
						
							| 16 | 14 15 | syl |  |-  ( y e. _om -> ( R1 ` suc y ) = ~P ( R1 ` y ) ) | 
						
							| 17 | 16 | eleq1d |  |-  ( y e. _om -> ( ( R1 ` suc y ) e. U <-> ~P ( R1 ` y ) e. U ) ) | 
						
							| 18 | 13 17 | imbitrrid |  |-  ( y e. _om -> ( ( ph /\ ( R1 ` y ) e. U ) -> ( R1 ` suc y ) e. U ) ) | 
						
							| 19 | 18 | expd |  |-  ( y e. _om -> ( ph -> ( ( R1 ` y ) e. U -> ( R1 ` suc y ) e. U ) ) ) | 
						
							| 20 | 3 5 7 10 19 | finds2 |  |-  ( x e. _om -> ( ph -> ( R1 ` x ) e. U ) ) | 
						
							| 21 |  | eleq1 |  |-  ( ( R1 ` x ) = y -> ( ( R1 ` x ) e. U <-> y e. U ) ) | 
						
							| 22 | 21 | imbi2d |  |-  ( ( R1 ` x ) = y -> ( ( ph -> ( R1 ` x ) e. U ) <-> ( ph -> y e. U ) ) ) | 
						
							| 23 | 20 22 | syl5ibcom |  |-  ( x e. _om -> ( ( R1 ` x ) = y -> ( ph -> y e. U ) ) ) | 
						
							| 24 | 23 | rexlimiv |  |-  ( E. x e. _om ( R1 ` x ) = y -> ( ph -> y e. U ) ) | 
						
							| 25 |  | r1fnon |  |-  R1 Fn On | 
						
							| 26 |  | fnfun |  |-  ( R1 Fn On -> Fun R1 ) | 
						
							| 27 | 25 26 | ax-mp |  |-  Fun R1 | 
						
							| 28 |  | fvelima |  |-  ( ( Fun R1 /\ y e. ( R1 " _om ) ) -> E. x e. _om ( R1 ` x ) = y ) | 
						
							| 29 | 27 28 | mpan |  |-  ( y e. ( R1 " _om ) -> E. x e. _om ( R1 ` x ) = y ) | 
						
							| 30 | 24 29 | syl11 |  |-  ( ph -> ( y e. ( R1 " _om ) -> y e. U ) ) | 
						
							| 31 | 30 | ssrdv |  |-  ( ph -> ( R1 " _om ) C_ U ) |