Metamath Proof Explorer


Theorem 00ply1bas

Description: Lemma for ply1basfvi and deg1fvi . (Contributed by Stefan O'Rear, 28-Mar-2015)

Ref Expression
Assertion 00ply1bas =BasePoly1

Proof

Step Hyp Ref Expression
1 noel ¬a
2 noel ¬a1𝑜×0
3 eqid Poly1=Poly1
4 eqid BasePoly1=BasePoly1
5 base0 =Base
6 3 4 5 ply1basf aBasePoly1a:01𝑜
7 0nn0 00
8 7 fconst6 1𝑜×0:1𝑜0
9 nn0ex 0V
10 1oex 1𝑜V
11 9 10 elmap 1𝑜×001𝑜1𝑜×0:1𝑜0
12 8 11 mpbir 1𝑜×001𝑜
13 ffvelcdm a:01𝑜1𝑜×001𝑜a1𝑜×0
14 6 12 13 sylancl aBasePoly1a1𝑜×0
15 2 14 mto ¬aBasePoly1
16 1 15 2false aaBasePoly1
17 16 eqriv =BasePoly1