Description: The identically zero function is a continuous Hilbert space functional. (Contributed by NM, 7-Feb-2006) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | 0cnfn | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0cn | |
|
2 | 1 | fconst6 | |
3 | 1rp | |
|
4 | c0ex | |
|
5 | 4 | fvconst2 | |
6 | 4 | fvconst2 | |
7 | 5 6 | oveqan12rd | |
8 | 7 | adantlr | |
9 | 0m0e0 | |
|
10 | 8 9 | eqtrdi | |
11 | 10 | fveq2d | |
12 | abs0 | |
|
13 | 11 12 | eqtrdi | |
14 | rpgt0 | |
|
15 | 14 | ad2antlr | |
16 | 13 15 | eqbrtrd | |
17 | 16 | a1d | |
18 | 17 | ralrimiva | |
19 | breq2 | |
|
20 | 19 | rspceaimv | |
21 | 3 18 20 | sylancr | |
22 | 21 | rgen2 | |
23 | elcnfn | |
|
24 | 2 22 23 | mpbir2an | |