Metamath Proof Explorer


Theorem 0cnfn

Description: The identically zero function is a continuous Hilbert space functional. (Contributed by NM, 7-Feb-2006) (New usage is discouraged.)

Ref Expression
Assertion 0cnfn ×0ContFn

Proof

Step Hyp Ref Expression
1 0cn 0
2 1 fconst6 ×0:
3 1rp 1+
4 c0ex 0V
5 4 fvconst2 w×0w=0
6 4 fvconst2 x×0x=0
7 5 6 oveqan12rd xw×0w×0x=00
8 7 adantlr xy+w×0w×0x=00
9 0m0e0 00=0
10 8 9 eqtrdi xy+w×0w×0x=0
11 10 fveq2d xy+w×0w×0x=0
12 abs0 0=0
13 11 12 eqtrdi xy+w×0w×0x=0
14 rpgt0 y+0<y
15 14 ad2antlr xy+w0<y
16 13 15 eqbrtrd xy+w×0w×0x<y
17 16 a1d xy+wnormw-x<1×0w×0x<y
18 17 ralrimiva xy+wnormw-x<1×0w×0x<y
19 breq2 z=1normw-x<znormw-x<1
20 19 rspceaimv 1+wnormw-x<1×0w×0x<yz+wnormw-x<z×0w×0x<y
21 3 18 20 sylancr xy+z+wnormw-x<z×0w×0x<y
22 21 rgen2 xy+z+wnormw-x<z×0w×0x<y
23 elcnfn ×0ContFn×0:xy+z+wnormw-x<z×0w×0x<y
24 2 22 23 mpbir2an ×0ContFn