Metamath Proof Explorer


Theorem 0cnfn

Description: The identically zero function is a continuous Hilbert space functional. (Contributed by NM, 7-Feb-2006) (New usage is discouraged.)

Ref Expression
Assertion 0cnfn × 0 ContFn

Proof

Step Hyp Ref Expression
1 0cn 0
2 1 fconst6 × 0 :
3 1rp 1 +
4 c0ex 0 V
5 4 fvconst2 w × 0 w = 0
6 4 fvconst2 x × 0 x = 0
7 5 6 oveqan12rd x w × 0 w × 0 x = 0 0
8 7 adantlr x y + w × 0 w × 0 x = 0 0
9 0m0e0 0 0 = 0
10 8 9 eqtrdi x y + w × 0 w × 0 x = 0
11 10 fveq2d x y + w × 0 w × 0 x = 0
12 abs0 0 = 0
13 11 12 eqtrdi x y + w × 0 w × 0 x = 0
14 rpgt0 y + 0 < y
15 14 ad2antlr x y + w 0 < y
16 13 15 eqbrtrd x y + w × 0 w × 0 x < y
17 16 a1d x y + w norm w - x < 1 × 0 w × 0 x < y
18 17 ralrimiva x y + w norm w - x < 1 × 0 w × 0 x < y
19 breq2 z = 1 norm w - x < z norm w - x < 1
20 19 rspceaimv 1 + w norm w - x < 1 × 0 w × 0 x < y z + w norm w - x < z × 0 w × 0 x < y
21 3 18 20 sylancr x y + z + w norm w - x < z × 0 w × 0 x < y
22 21 rgen2 x y + z + w norm w - x < z × 0 w × 0 x < y
23 elcnfn × 0 ContFn × 0 : x y + z + w norm w - x < z × 0 w × 0 x < y
24 2 22 23 mpbir2an × 0 ContFn