Metamath Proof Explorer


Theorem 0funcg2

Description: The functor from the empty category. (Contributed by Zhi Wang, 17-Oct-2025)

Ref Expression
Hypotheses 0funcg.c φ C V
0funcg.b φ = Base C
0funcg.d φ D Cat
Assertion 0funcg2 φ F C Func D G F = G =

Proof

Step Hyp Ref Expression
1 0funcg.c φ C V
2 0funcg.b φ = Base C
3 0funcg.d φ D Cat
4 eqid Base C = Base C
5 eqid Base D = Base D
6 eqid Hom C = Hom C
7 eqid Hom D = Hom D
8 eqid Id C = Id C
9 eqid Id D = Id D
10 eqid comp C = comp C
11 eqid comp D = comp D
12 0catg C V = Base C C Cat
13 1 2 12 syl2anc φ C Cat
14 4 5 6 7 8 9 10 11 13 3 isfunc φ F C Func D G F : Base C Base D G z Base C × Base C F 1 st z Hom D F 2 nd z Hom C z x Base C x G x Id C x = Id D F x y Base C z Base C m x Hom C y n y Hom C z x G z n x y comp C z m = y G z n F x F y comp D F z x G y m
15 2 feq2d φ F : Base D F : Base C Base D
16 f0bi F : Base D F =
17 15 16 bitr3di φ F : Base C Base D F =
18 2 eqcomd φ Base C =
19 rzal Base C = x Base C y Base C x G y : x Hom C y F x Hom D F y
20 18 19 syl φ x Base C y Base C x G y : x Hom C y F x Hom D F y
21 4 funcf2lem2 G z Base C × Base C F 1 st z Hom D F 2 nd z Hom C z G Fn Base C × Base C x Base C y Base C x G y : x Hom C y F x Hom D F y
22 21 a1i φ G z Base C × Base C F 1 st z Hom D F 2 nd z Hom C z G Fn Base C × Base C x Base C y Base C x G y : x Hom C y F x Hom D F y
23 20 22 mpbiran2d φ G z Base C × Base C F 1 st z Hom D F 2 nd z Hom C z G Fn Base C × Base C
24 2 sqxpeqd φ × = Base C × Base C
25 0xp × =
26 24 25 eqtr3di φ Base C × Base C =
27 26 fneq2d φ G Fn Base C × Base C G Fn
28 fn0 G Fn G =
29 27 28 bitrdi φ G Fn Base C × Base C G =
30 23 29 bitrd φ G z Base C × Base C F 1 st z Hom D F 2 nd z Hom C z G =
31 rzal Base C = x Base C x G x Id C x = Id D F x y Base C z Base C m x Hom C y n y Hom C z x G z n x y comp C z m = y G z n F x F y comp D F z x G y m
32 18 31 syl φ x Base C x G x Id C x = Id D F x y Base C z Base C m x Hom C y n y Hom C z x G z n x y comp C z m = y G z n F x F y comp D F z x G y m
33 14 17 30 32 0funcglem φ F C Func D G F = G =