Metamath Proof Explorer


Theorem 0mnnnnn0

Description: The result of subtracting a positive integer from 0 is not a nonnegative integer. (Contributed by Alexander van der Vekens, 19-Mar-2018)

Ref Expression
Assertion 0mnnnnn0 N0N0

Proof

Step Hyp Ref Expression
1 0re 0
2 nnel ¬0N00N0
3 df-neg N=0N
4 3 eqcomi 0N=N
5 4 eleq1i 0N0N0
6 nn0ge0 N00N
7 nnre NN
8 7 le0neg1d NN00N
9 nngt0 N0<N
10 0red N0
11 10 7 ltnled N0<N¬N0
12 pm2.21 ¬N0N0¬0
13 11 12 syl6bi N0<NN0¬0
14 9 13 mpd NN0¬0
15 8 14 sylbird N0N¬0
16 6 15 syl5 NN0¬0
17 5 16 biimtrid N0N0¬0
18 2 17 biimtrid N¬0N0¬0
19 1 18 mt4i N0N0