Metamath Proof Explorer


Theorem 0ring1eq0

Description: In a zero ring, a ring which is not a nonzero ring, the ring unity equals the zero element. (Contributed by AV, 17-Apr-2020)

Ref Expression
Hypotheses 0ring.b B=BaseR
0ring.0 0˙=0R
0ring01eq.1 1˙=1R
Assertion 0ring1eq0 RRingNzRing1˙=0˙

Proof

Step Hyp Ref Expression
1 0ring.b B=BaseR
2 0ring.0 0˙=0R
3 0ring01eq.1 1˙=1R
4 eldif RRingNzRingRRing¬RNzRing
5 0ringnnzr RRingBaseR=1¬RNzRing
6 eqid BaseR=BaseR
7 6 2 3 0ring01eq RRingBaseR=10˙=1˙
8 7 eqcomd RRingBaseR=11˙=0˙
9 8 ex RRingBaseR=11˙=0˙
10 5 9 sylbird RRing¬RNzRing1˙=0˙
11 10 imp RRing¬RNzRing1˙=0˙
12 4 11 sylbi RRingNzRing1˙=0˙