Description: In a zero ring, a ring which is not a nonzero ring, the ring unity equals the zero element. (Contributed by AV, 17-Apr-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | 0ring.b | |
|
0ring.0 | |
||
0ring01eq.1 | |
||
Assertion | 0ring1eq0 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ring.b | |
|
2 | 0ring.0 | |
|
3 | 0ring01eq.1 | |
|
4 | eldif | |
|
5 | 0ringnnzr | |
|
6 | eqid | |
|
7 | 6 2 3 | 0ring01eq | |
8 | 7 | eqcomd | |
9 | 8 | ex | |
10 | 5 9 | sylbird | |
11 | 10 | imp | |
12 | 4 11 | sylbi | |