Metamath Proof Explorer


Theorem 0unit

Description: The additive identity is a unit if and only if 1 = 0 , i.e. we are in the zero ring. (Contributed by Mario Carneiro, 4-Dec-2014)

Ref Expression
Hypotheses 0unit.1 U = Unit R
0unit.2 0 ˙ = 0 R
0unit.3 1 ˙ = 1 R
Assertion 0unit R Ring 0 ˙ U 1 ˙ = 0 ˙

Proof

Step Hyp Ref Expression
1 0unit.1 U = Unit R
2 0unit.2 0 ˙ = 0 R
3 0unit.3 1 ˙ = 1 R
4 eqid inv r R = inv r R
5 eqid R = R
6 1 4 5 3 unitrinv R Ring 0 ˙ U 0 ˙ R inv r R 0 ˙ = 1 ˙
7 eqid Base R = Base R
8 1 4 7 ringinvcl R Ring 0 ˙ U inv r R 0 ˙ Base R
9 7 5 2 ringlz R Ring inv r R 0 ˙ Base R 0 ˙ R inv r R 0 ˙ = 0 ˙
10 8 9 syldan R Ring 0 ˙ U 0 ˙ R inv r R 0 ˙ = 0 ˙
11 6 10 eqtr3d R Ring 0 ˙ U 1 ˙ = 0 ˙
12 simpr R Ring 1 ˙ = 0 ˙ 1 ˙ = 0 ˙
13 1 3 1unit R Ring 1 ˙ U
14 13 adantr R Ring 1 ˙ = 0 ˙ 1 ˙ U
15 12 14 eqeltrrd R Ring 1 ˙ = 0 ˙ 0 ˙ U
16 11 15 impbida R Ring 0 ˙ U 1 ˙ = 0 ˙