Metamath Proof Explorer


Theorem 1259lem2

Description: Lemma for 1259prm . Calculate a power mod. In decimal, we calculate 2 ^ 3 4 = ( 2 ^ 1 7 ) ^ 2 == 1 3 6 ^ 2 == 1 4 N + 8 7 0 . (Contributed by Mario Carneiro, 22-Feb-2014) (Revised by Mario Carneiro, 20-Apr-2015) (Proof shortened by AV, 15-Sep-2021)

Ref Expression
Hypothesis 1259prm.1 N=1259
Assertion 1259lem2 234modN=870modN

Proof

Step Hyp Ref Expression
1 1259prm.1 N=1259
2 1nn0 10
3 2nn0 20
4 2 3 deccl 120
5 5nn0 50
6 4 5 deccl 1250
7 9nn 9
8 6 7 decnncl 1259
9 1 8 eqeltri N
10 2nn 2
11 7nn0 70
12 2 11 deccl 170
13 4nn0 40
14 2 13 deccl 140
15 14 nn0zi 14
16 3nn0 30
17 2 16 deccl 130
18 6nn0 60
19 17 18 deccl 1360
20 8nn0 80
21 20 11 deccl 870
22 0nn0 00
23 21 22 deccl 8700
24 1 1259lem1 217modN=136modN
25 eqid 17=17
26 2cn 2
27 26 mulridi 21=2
28 27 oveq1i 21+1=2+1
29 2p1e3 2+1=3
30 28 29 eqtri 21+1=3
31 7cn 7
32 7t2e14 72=14
33 31 26 32 mulcomli 27=14
34 3 2 11 25 13 2 30 33 decmul2c 217=34
35 9nn0 90
36 eqid 870=870
37 eqid 125=125
38 eqid 87=87
39 eqid 12=12
40 8p1e9 8+1=9
41 7p2e9 7+2=9
42 20 11 2 3 38 39 40 41 decadd 87+12=99
43 9p7e16 9+7=16
44 eqid 14=14
45 3cn 3
46 ax-1cn 1
47 3p1e4 3+1=4
48 45 46 47 addcomli 1+3=4
49 13 dec0h 4=04
50 48 49 eqtri 1+3=04
51 46 mulridi 11=1
52 00id 0+0=0
53 51 52 oveq12i 11+0+0=1+0
54 46 addridi 1+0=1
55 53 54 eqtri 11+0+0=1
56 4cn 4
57 56 mulridi 41=4
58 57 oveq1i 41+4=4+4
59 4p4e8 4+4=8
60 20 dec0h 8=08
61 58 59 60 3eqtri 41+4=08
62 2 13 22 13 44 50 2 20 22 55 61 decmac 141+1+3=18
63 18 dec0h 6=06
64 26 mullidi 12=2
65 46 addlidi 0+1=1
66 64 65 oveq12i 12+0+1=2+1
67 66 29 eqtri 12+0+1=3
68 4t2e8 42=8
69 68 oveq1i 42+6=8+6
70 8p6e14 8+6=14
71 69 70 eqtri 42+6=14
72 2 13 22 18 44 63 3 13 2 67 71 decmac 142+6=34
73 2 3 2 18 39 43 14 13 16 62 72 decma2c 1412+9+7=184
74 35 dec0h 9=09
75 5cn 5
76 75 mullidi 15=5
77 26 addlidi 0+2=2
78 76 77 oveq12i 15+0+2=5+2
79 5p2e7 5+2=7
80 78 79 eqtri 15+0+2=7
81 5t4e20 54=20
82 75 56 81 mulcomli 45=20
83 9cn 9
84 83 addlidi 0+9=9
85 3 22 35 82 84 decaddi 45+9=29
86 2 13 22 35 44 74 5 35 3 80 85 decmac 145+9=79
87 4 5 35 35 37 42 14 35 11 73 86 decma2c 14125+87+12=1849
88 83 mullidi 19=9
89 88 oveq1i 19+3=9+3
90 9p3e12 9+3=12
91 89 90 eqtri 19+3=12
92 9t4e36 94=36
93 83 56 92 mulcomli 49=36
94 35 2 13 44 18 16 91 93 decmul1c 149=126
95 94 oveq1i 149+0=126+0
96 4 18 deccl 1260
97 96 nn0cni 126
98 97 addridi 126+0=126
99 95 98 eqtri 149+0=126
100 6 35 21 22 1 36 14 18 4 87 99 decma2c 14 N+870=18496
101 eqid 136=136
102 20 2 deccl 810
103 eqid 13=13
104 eqid 81=81
105 13 22 deccl 400
106 eqid 40=40
107 56 addlidi 0+4=4
108 8cn 8
109 108 addridi 8+0=8
110 22 20 13 22 60 106 107 109 decadd 8+40=48
111 4p1e5 4+1=5
112 5 dec0h 5=05
113 111 112 eqtri 4+1=05
114 45 mulridi 31=3
115 114 oveq1i 31+5=3+5
116 5p3e8 5+3=8
117 75 45 116 addcomli 3+5=8
118 115 117 60 3eqtri 31+5=08
119 2 16 22 5 103 113 2 20 22 55 118 decmac 131+4+1=18
120 6cn 6
121 120 mulridi 61=6
122 121 oveq1i 61+8=6+8
123 108 120 70 addcomli 6+8=14
124 122 123 eqtri 61+8=14
125 17 18 13 20 101 110 2 13 2 119 124 decmac 1361+8+40=184
126 2 dec0h 1=01
127 65 126 eqtri 0+1=01
128 45 mullidi 13=3
129 128 65 oveq12i 13+0+1=3+1
130 129 47 eqtri 13+0+1=4
131 3t3e9 33=9
132 131 oveq1i 33+1=9+1
133 9p1e10 9+1=10
134 132 133 eqtri 33+1=10
135 2 16 22 2 103 127 16 22 2 130 134 decmac 133+0+1=40
136 6t3e18 63=18
137 2 20 2 136 40 decaddi 63+1=19
138 17 18 22 2 101 126 16 35 2 135 137 decmac 1363+1=409
139 2 16 20 2 103 104 19 35 105 125 138 decma2c 13613+81=1849
140 16 dec0h 3=03
141 120 mullidi 16=6
142 141 77 oveq12i 16+0+2=6+2
143 6p2e8 6+2=8
144 142 143 eqtri 16+0+2=8
145 120 45 136 mulcomli 36=18
146 1p1e2 1+1=2
147 8p3e11 8+3=11
148 2 20 16 145 146 2 147 decaddci 36+3=21
149 2 16 22 16 103 140 18 2 3 144 148 decmac 136+3=81
150 6t6e36 66=36
151 18 17 18 101 18 16 149 150 decmul1c 1366=816
152 19 17 18 101 18 102 139 151 decmul2c 136136=18496
153 100 152 eqtr4i 14 N+870=136136
154 9 10 12 15 19 23 24 34 153 mod2xi 234modN=870modN