Metamath Proof Explorer


Theorem 1259lem3

Description: Lemma for 1259prm . Calculate a power mod. In decimal, we calculate 2 ^ 3 8 = 2 ^ 3 4 x. 2 ^ 4 == 8 7 0 x. 1 6 = 1 1 N + 7 1 and 2 ^ 7 6 = ( 2 ^ 3 4 ) ^ 2 == 7 1 ^ 2 = 4 N + 5 == 5 . (Contributed by Mario Carneiro, 22-Feb-2014) (Revised by Mario Carneiro, 20-Apr-2015) (Proof shortened by AV, 16-Sep-2021)

Ref Expression
Hypothesis 1259prm.1 N=1259
Assertion 1259lem3 276modN=5modN

Proof

Step Hyp Ref Expression
1 1259prm.1 N=1259
2 1nn0 10
3 2nn0 20
4 2 3 deccl 120
5 5nn0 50
6 4 5 deccl 1250
7 9nn 9
8 6 7 decnncl 1259
9 1 8 eqeltri N
10 2nn 2
11 3nn0 30
12 8nn0 80
13 11 12 deccl 380
14 4z 4
15 7nn0 70
16 15 2 deccl 710
17 4nn0 40
18 11 17 deccl 340
19 2 2 deccl 110
20 19 nn0zi 11
21 12 15 deccl 870
22 0nn0 00
23 21 22 deccl 8700
24 6nn0 60
25 2 24 deccl 160
26 1 1259lem2 234modN=870modN
27 2exp4 24=16
28 27 oveq1i 24modN=16modN
29 eqid 34=34
30 4p4e8 4+4=8
31 11 17 17 29 30 decaddi 34+4=38
32 9nn0 90
33 eqid 71=71
34 10nn0 100
35 eqid 11=11
36 34 nn0cni 10
37 7cn 7
38 dec10p 10+7=17
39 36 37 38 addcomli 7+10=17
40 2 11 deccl 130
41 6 nn0cni 125
42 41 mullidi 1125=125
43 2 dec0h 1=01
44 eqid 13=13
45 0p1e1 0+1=1
46 3cn 3
47 ax-1cn 1
48 3p1e4 3+1=4
49 46 47 48 addcomli 1+3=4
50 22 2 2 11 43 44 45 49 decadd 1+13=14
51 2p1e3 2+1=3
52 eqid 12=12
53 2 3 51 52 decsuc 12+1=13
54 5p4e9 5+4=9
55 4 5 2 17 42 50 53 54 decadd 1125+1+13=139
56 5cn 5
57 7p5e12 7+5=12
58 37 56 57 addcomli 5+7=12
59 4 5 15 42 53 3 58 decaddci 1125+7=132
60 2 2 2 15 35 39 6 3 40 55 59 decmac 11125+7+10=1392
61 9p1e10 9+1=10
62 9cn 9
63 19 nn0cni 11
64 9t11e99 911=99
65 62 63 64 mulcomli 119=99
66 32 61 65 decsucc 119+1=100
67 6 32 15 2 1 33 19 22 34 60 66 decma2c 11 N+71=13920
68 eqid 16=16
69 5 3 deccl 520
70 69 3 deccl 5220
71 eqid 870=870
72 eqid 522=522
73 eqid 87=87
74 69 nn0cni 52
75 74 addridi 52+0=52
76 8cn 8
77 76 mulridi 81=8
78 56 addridi 5+0=5
79 77 78 oveq12i 81+5+0=8+5
80 8p5e13 8+5=13
81 79 80 eqtri 81+5+0=13
82 37 mulridi 71=7
83 82 oveq1i 71+2=7+2
84 7p2e9 7+2=9
85 32 dec0h 9=09
86 83 84 85 3eqtri 71+2=09
87 12 15 5 3 73 75 2 32 22 81 86 decmac 871+52+0=139
88 47 mul02i 01=0
89 88 oveq1i 01+2=0+2
90 2cn 2
91 90 addlidi 0+2=2
92 3 dec0h 2=02
93 89 91 92 3eqtri 01+2=02
94 21 22 69 3 71 72 2 3 22 87 93 decmac 8701+522=1392
95 8t6e48 86=48
96 4p1e5 4+1=5
97 8p4e12 8+4=12
98 17 12 17 95 96 3 97 decaddci 86+4=52
99 7t6e42 76=42
100 24 12 15 73 3 17 98 99 decmul1c 876=522
101 6cn 6
102 101 mul02i 06=0
103 24 21 22 71 100 102 decmul1 8706=5220
104 23 2 24 68 22 70 94 103 decmul2c 87016=13920
105 67 104 eqtr4i 11 N+71=87016
106 9 10 18 20 23 16 17 25 26 28 31 105 modxai 238modN=71modN
107 eqid 38=38
108 3t2e6 32=6
109 46 90 108 mulcomli 23=6
110 109 oveq1i 23+1=6+1
111 6p1e7 6+1=7
112 110 111 eqtri 23+1=7
113 8t2e16 82=16
114 76 90 113 mulcomli 28=16
115 3 11 12 107 24 2 112 114 decmul2c 238=76
116 5 dec0h 5=05
117 eqid 125=125
118 4cn 4
119 118 addlidi 0+4=4
120 17 dec0h 4=04
121 119 120 eqtri 0+4=04
122 91 92 eqtri 0+2=02
123 118 mulridi 41=4
124 123 45 oveq12i 41+0+1=4+1
125 124 96 eqtri 41+0+1=5
126 4t2e8 42=8
127 126 oveq1i 42+2=8+2
128 8p2e10 8+2=10
129 127 128 eqtri 42+2=10
130 2 3 22 3 52 122 17 22 2 125 129 decma2c 412+0+2=50
131 5t4e20 54=20
132 56 118 131 mulcomli 45=20
133 3 22 17 132 119 decaddi 45+4=24
134 4 5 22 17 117 121 17 17 3 130 133 decma2c 4125+0+4=504
135 9t4e36 94=36
136 62 118 135 mulcomli 49=36
137 6p5e11 6+5=11
138 11 24 5 136 48 2 137 decaddci 49+5=41
139 6 32 22 5 1 116 17 2 17 134 138 decma2c 4 N+5=5041
140 7t7e49 77=49
141 17 96 140 decsucc 77+1=50
142 37 mullidi 17=7
143 142 oveq1i 17+7=7+7
144 7p7e14 7+7=14
145 143 144 eqtri 17+7=14
146 15 2 15 33 15 17 2 141 145 decrmac 717+7=504
147 16 nn0cni 71
148 147 mulridi 711=71
149 16 15 2 33 2 15 146 148 decmul2c 7171=5041
150 139 149 eqtr4i 4 N+5=7171
151 9 10 13 14 16 5 106 115 150 mod2xi 276modN=5modN