Description: Lemma for 1259prm . Calculate a power mod. In decimal, we calculate 2 ^ 3 8 = 2 ^ 3 4 x. 2 ^ 4 == 8 7 0 x. 1 6 = 1 1 N + 7 1 and 2 ^ 7 6 = ( 2 ^ 3 4 ) ^ 2 == 7 1 ^ 2 = 4 N + 5 == 5 . (Contributed by Mario Carneiro, 22-Feb-2014) (Revised by Mario Carneiro, 20-Apr-2015) (Proof shortened by AV, 16-Sep-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | 1259prm.1 | ⊢ 𝑁 = ; ; ; 1 2 5 9 | |
| Assertion | 1259lem3 | ⊢ ( ( 2 ↑ ; 7 6 ) mod 𝑁 ) = ( 5 mod 𝑁 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1259prm.1 | ⊢ 𝑁 = ; ; ; 1 2 5 9 | |
| 2 | 1nn0 | ⊢ 1 ∈ ℕ0 | |
| 3 | 2nn0 | ⊢ 2 ∈ ℕ0 | |
| 4 | 2 3 | deccl | ⊢ ; 1 2 ∈ ℕ0 |
| 5 | 5nn0 | ⊢ 5 ∈ ℕ0 | |
| 6 | 4 5 | deccl | ⊢ ; ; 1 2 5 ∈ ℕ0 |
| 7 | 9nn | ⊢ 9 ∈ ℕ | |
| 8 | 6 7 | decnncl | ⊢ ; ; ; 1 2 5 9 ∈ ℕ |
| 9 | 1 8 | eqeltri | ⊢ 𝑁 ∈ ℕ |
| 10 | 2nn | ⊢ 2 ∈ ℕ | |
| 11 | 3nn0 | ⊢ 3 ∈ ℕ0 | |
| 12 | 8nn0 | ⊢ 8 ∈ ℕ0 | |
| 13 | 11 12 | deccl | ⊢ ; 3 8 ∈ ℕ0 |
| 14 | 4z | ⊢ 4 ∈ ℤ | |
| 15 | 7nn0 | ⊢ 7 ∈ ℕ0 | |
| 16 | 15 2 | deccl | ⊢ ; 7 1 ∈ ℕ0 |
| 17 | 4nn0 | ⊢ 4 ∈ ℕ0 | |
| 18 | 11 17 | deccl | ⊢ ; 3 4 ∈ ℕ0 |
| 19 | 2 2 | deccl | ⊢ ; 1 1 ∈ ℕ0 |
| 20 | 19 | nn0zi | ⊢ ; 1 1 ∈ ℤ |
| 21 | 12 15 | deccl | ⊢ ; 8 7 ∈ ℕ0 |
| 22 | 0nn0 | ⊢ 0 ∈ ℕ0 | |
| 23 | 21 22 | deccl | ⊢ ; ; 8 7 0 ∈ ℕ0 |
| 24 | 6nn0 | ⊢ 6 ∈ ℕ0 | |
| 25 | 2 24 | deccl | ⊢ ; 1 6 ∈ ℕ0 |
| 26 | 1 | 1259lem2 | ⊢ ( ( 2 ↑ ; 3 4 ) mod 𝑁 ) = ( ; ; 8 7 0 mod 𝑁 ) |
| 27 | 2exp4 | ⊢ ( 2 ↑ 4 ) = ; 1 6 | |
| 28 | 27 | oveq1i | ⊢ ( ( 2 ↑ 4 ) mod 𝑁 ) = ( ; 1 6 mod 𝑁 ) |
| 29 | eqid | ⊢ ; 3 4 = ; 3 4 | |
| 30 | 4p4e8 | ⊢ ( 4 + 4 ) = 8 | |
| 31 | 11 17 17 29 30 | decaddi | ⊢ ( ; 3 4 + 4 ) = ; 3 8 |
| 32 | 9nn0 | ⊢ 9 ∈ ℕ0 | |
| 33 | eqid | ⊢ ; 7 1 = ; 7 1 | |
| 34 | 10nn0 | ⊢ ; 1 0 ∈ ℕ0 | |
| 35 | eqid | ⊢ ; 1 1 = ; 1 1 | |
| 36 | 34 | nn0cni | ⊢ ; 1 0 ∈ ℂ |
| 37 | 7cn | ⊢ 7 ∈ ℂ | |
| 38 | dec10p | ⊢ ( ; 1 0 + 7 ) = ; 1 7 | |
| 39 | 36 37 38 | addcomli | ⊢ ( 7 + ; 1 0 ) = ; 1 7 |
| 40 | 2 11 | deccl | ⊢ ; 1 3 ∈ ℕ0 |
| 41 | 6 | nn0cni | ⊢ ; ; 1 2 5 ∈ ℂ |
| 42 | 41 | mullidi | ⊢ ( 1 · ; ; 1 2 5 ) = ; ; 1 2 5 |
| 43 | 2 | dec0h | ⊢ 1 = ; 0 1 |
| 44 | eqid | ⊢ ; 1 3 = ; 1 3 | |
| 45 | 0p1e1 | ⊢ ( 0 + 1 ) = 1 | |
| 46 | 3cn | ⊢ 3 ∈ ℂ | |
| 47 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 48 | 3p1e4 | ⊢ ( 3 + 1 ) = 4 | |
| 49 | 46 47 48 | addcomli | ⊢ ( 1 + 3 ) = 4 |
| 50 | 22 2 2 11 43 44 45 49 | decadd | ⊢ ( 1 + ; 1 3 ) = ; 1 4 |
| 51 | 2p1e3 | ⊢ ( 2 + 1 ) = 3 | |
| 52 | eqid | ⊢ ; 1 2 = ; 1 2 | |
| 53 | 2 3 51 52 | decsuc | ⊢ ( ; 1 2 + 1 ) = ; 1 3 |
| 54 | 5p4e9 | ⊢ ( 5 + 4 ) = 9 | |
| 55 | 4 5 2 17 42 50 53 54 | decadd | ⊢ ( ( 1 · ; ; 1 2 5 ) + ( 1 + ; 1 3 ) ) = ; ; 1 3 9 |
| 56 | 5cn | ⊢ 5 ∈ ℂ | |
| 57 | 7p5e12 | ⊢ ( 7 + 5 ) = ; 1 2 | |
| 58 | 37 56 57 | addcomli | ⊢ ( 5 + 7 ) = ; 1 2 |
| 59 | 4 5 15 42 53 3 58 | decaddci | ⊢ ( ( 1 · ; ; 1 2 5 ) + 7 ) = ; ; 1 3 2 |
| 60 | 2 2 2 15 35 39 6 3 40 55 59 | decmac | ⊢ ( ( ; 1 1 · ; ; 1 2 5 ) + ( 7 + ; 1 0 ) ) = ; ; ; 1 3 9 2 |
| 61 | 9p1e10 | ⊢ ( 9 + 1 ) = ; 1 0 | |
| 62 | 9cn | ⊢ 9 ∈ ℂ | |
| 63 | 19 | nn0cni | ⊢ ; 1 1 ∈ ℂ |
| 64 | 9t11e99 | ⊢ ( 9 · ; 1 1 ) = ; 9 9 | |
| 65 | 62 63 64 | mulcomli | ⊢ ( ; 1 1 · 9 ) = ; 9 9 |
| 66 | 32 61 65 | decsucc | ⊢ ( ( ; 1 1 · 9 ) + 1 ) = ; ; 1 0 0 |
| 67 | 6 32 15 2 1 33 19 22 34 60 66 | decma2c | ⊢ ( ( ; 1 1 · 𝑁 ) + ; 7 1 ) = ; ; ; ; 1 3 9 2 0 |
| 68 | eqid | ⊢ ; 1 6 = ; 1 6 | |
| 69 | 5 3 | deccl | ⊢ ; 5 2 ∈ ℕ0 |
| 70 | 69 3 | deccl | ⊢ ; ; 5 2 2 ∈ ℕ0 |
| 71 | eqid | ⊢ ; ; 8 7 0 = ; ; 8 7 0 | |
| 72 | eqid | ⊢ ; ; 5 2 2 = ; ; 5 2 2 | |
| 73 | eqid | ⊢ ; 8 7 = ; 8 7 | |
| 74 | 69 | nn0cni | ⊢ ; 5 2 ∈ ℂ |
| 75 | 74 | addridi | ⊢ ( ; 5 2 + 0 ) = ; 5 2 |
| 76 | 8cn | ⊢ 8 ∈ ℂ | |
| 77 | 76 | mulridi | ⊢ ( 8 · 1 ) = 8 |
| 78 | 56 | addridi | ⊢ ( 5 + 0 ) = 5 |
| 79 | 77 78 | oveq12i | ⊢ ( ( 8 · 1 ) + ( 5 + 0 ) ) = ( 8 + 5 ) |
| 80 | 8p5e13 | ⊢ ( 8 + 5 ) = ; 1 3 | |
| 81 | 79 80 | eqtri | ⊢ ( ( 8 · 1 ) + ( 5 + 0 ) ) = ; 1 3 |
| 82 | 37 | mulridi | ⊢ ( 7 · 1 ) = 7 |
| 83 | 82 | oveq1i | ⊢ ( ( 7 · 1 ) + 2 ) = ( 7 + 2 ) |
| 84 | 7p2e9 | ⊢ ( 7 + 2 ) = 9 | |
| 85 | 32 | dec0h | ⊢ 9 = ; 0 9 |
| 86 | 83 84 85 | 3eqtri | ⊢ ( ( 7 · 1 ) + 2 ) = ; 0 9 |
| 87 | 12 15 5 3 73 75 2 32 22 81 86 | decmac | ⊢ ( ( ; 8 7 · 1 ) + ( ; 5 2 + 0 ) ) = ; ; 1 3 9 |
| 88 | 47 | mul02i | ⊢ ( 0 · 1 ) = 0 |
| 89 | 88 | oveq1i | ⊢ ( ( 0 · 1 ) + 2 ) = ( 0 + 2 ) |
| 90 | 2cn | ⊢ 2 ∈ ℂ | |
| 91 | 90 | addlidi | ⊢ ( 0 + 2 ) = 2 |
| 92 | 3 | dec0h | ⊢ 2 = ; 0 2 |
| 93 | 89 91 92 | 3eqtri | ⊢ ( ( 0 · 1 ) + 2 ) = ; 0 2 |
| 94 | 21 22 69 3 71 72 2 3 22 87 93 | decmac | ⊢ ( ( ; ; 8 7 0 · 1 ) + ; ; 5 2 2 ) = ; ; ; 1 3 9 2 |
| 95 | 8t6e48 | ⊢ ( 8 · 6 ) = ; 4 8 | |
| 96 | 4p1e5 | ⊢ ( 4 + 1 ) = 5 | |
| 97 | 8p4e12 | ⊢ ( 8 + 4 ) = ; 1 2 | |
| 98 | 17 12 17 95 96 3 97 | decaddci | ⊢ ( ( 8 · 6 ) + 4 ) = ; 5 2 |
| 99 | 7t6e42 | ⊢ ( 7 · 6 ) = ; 4 2 | |
| 100 | 24 12 15 73 3 17 98 99 | decmul1c | ⊢ ( ; 8 7 · 6 ) = ; ; 5 2 2 |
| 101 | 6cn | ⊢ 6 ∈ ℂ | |
| 102 | 101 | mul02i | ⊢ ( 0 · 6 ) = 0 |
| 103 | 24 21 22 71 100 102 | decmul1 | ⊢ ( ; ; 8 7 0 · 6 ) = ; ; ; 5 2 2 0 |
| 104 | 23 2 24 68 22 70 94 103 | decmul2c | ⊢ ( ; ; 8 7 0 · ; 1 6 ) = ; ; ; ; 1 3 9 2 0 |
| 105 | 67 104 | eqtr4i | ⊢ ( ( ; 1 1 · 𝑁 ) + ; 7 1 ) = ( ; ; 8 7 0 · ; 1 6 ) |
| 106 | 9 10 18 20 23 16 17 25 26 28 31 105 | modxai | ⊢ ( ( 2 ↑ ; 3 8 ) mod 𝑁 ) = ( ; 7 1 mod 𝑁 ) |
| 107 | eqid | ⊢ ; 3 8 = ; 3 8 | |
| 108 | 3t2e6 | ⊢ ( 3 · 2 ) = 6 | |
| 109 | 46 90 108 | mulcomli | ⊢ ( 2 · 3 ) = 6 |
| 110 | 109 | oveq1i | ⊢ ( ( 2 · 3 ) + 1 ) = ( 6 + 1 ) |
| 111 | 6p1e7 | ⊢ ( 6 + 1 ) = 7 | |
| 112 | 110 111 | eqtri | ⊢ ( ( 2 · 3 ) + 1 ) = 7 |
| 113 | 8t2e16 | ⊢ ( 8 · 2 ) = ; 1 6 | |
| 114 | 76 90 113 | mulcomli | ⊢ ( 2 · 8 ) = ; 1 6 |
| 115 | 3 11 12 107 24 2 112 114 | decmul2c | ⊢ ( 2 · ; 3 8 ) = ; 7 6 |
| 116 | 5 | dec0h | ⊢ 5 = ; 0 5 |
| 117 | eqid | ⊢ ; ; 1 2 5 = ; ; 1 2 5 | |
| 118 | 4cn | ⊢ 4 ∈ ℂ | |
| 119 | 118 | addlidi | ⊢ ( 0 + 4 ) = 4 |
| 120 | 17 | dec0h | ⊢ 4 = ; 0 4 |
| 121 | 119 120 | eqtri | ⊢ ( 0 + 4 ) = ; 0 4 |
| 122 | 91 92 | eqtri | ⊢ ( 0 + 2 ) = ; 0 2 |
| 123 | 118 | mulridi | ⊢ ( 4 · 1 ) = 4 |
| 124 | 123 45 | oveq12i | ⊢ ( ( 4 · 1 ) + ( 0 + 1 ) ) = ( 4 + 1 ) |
| 125 | 124 96 | eqtri | ⊢ ( ( 4 · 1 ) + ( 0 + 1 ) ) = 5 |
| 126 | 4t2e8 | ⊢ ( 4 · 2 ) = 8 | |
| 127 | 126 | oveq1i | ⊢ ( ( 4 · 2 ) + 2 ) = ( 8 + 2 ) |
| 128 | 8p2e10 | ⊢ ( 8 + 2 ) = ; 1 0 | |
| 129 | 127 128 | eqtri | ⊢ ( ( 4 · 2 ) + 2 ) = ; 1 0 |
| 130 | 2 3 22 3 52 122 17 22 2 125 129 | decma2c | ⊢ ( ( 4 · ; 1 2 ) + ( 0 + 2 ) ) = ; 5 0 |
| 131 | 5t4e20 | ⊢ ( 5 · 4 ) = ; 2 0 | |
| 132 | 56 118 131 | mulcomli | ⊢ ( 4 · 5 ) = ; 2 0 |
| 133 | 3 22 17 132 119 | decaddi | ⊢ ( ( 4 · 5 ) + 4 ) = ; 2 4 |
| 134 | 4 5 22 17 117 121 17 17 3 130 133 | decma2c | ⊢ ( ( 4 · ; ; 1 2 5 ) + ( 0 + 4 ) ) = ; ; 5 0 4 |
| 135 | 9t4e36 | ⊢ ( 9 · 4 ) = ; 3 6 | |
| 136 | 62 118 135 | mulcomli | ⊢ ( 4 · 9 ) = ; 3 6 |
| 137 | 6p5e11 | ⊢ ( 6 + 5 ) = ; 1 1 | |
| 138 | 11 24 5 136 48 2 137 | decaddci | ⊢ ( ( 4 · 9 ) + 5 ) = ; 4 1 |
| 139 | 6 32 22 5 1 116 17 2 17 134 138 | decma2c | ⊢ ( ( 4 · 𝑁 ) + 5 ) = ; ; ; 5 0 4 1 |
| 140 | 7t7e49 | ⊢ ( 7 · 7 ) = ; 4 9 | |
| 141 | 17 96 140 | decsucc | ⊢ ( ( 7 · 7 ) + 1 ) = ; 5 0 |
| 142 | 37 | mullidi | ⊢ ( 1 · 7 ) = 7 |
| 143 | 142 | oveq1i | ⊢ ( ( 1 · 7 ) + 7 ) = ( 7 + 7 ) |
| 144 | 7p7e14 | ⊢ ( 7 + 7 ) = ; 1 4 | |
| 145 | 143 144 | eqtri | ⊢ ( ( 1 · 7 ) + 7 ) = ; 1 4 |
| 146 | 15 2 15 33 15 17 2 141 145 | decrmac | ⊢ ( ( ; 7 1 · 7 ) + 7 ) = ; ; 5 0 4 |
| 147 | 16 | nn0cni | ⊢ ; 7 1 ∈ ℂ |
| 148 | 147 | mulridi | ⊢ ( ; 7 1 · 1 ) = ; 7 1 |
| 149 | 16 15 2 33 2 15 146 148 | decmul2c | ⊢ ( ; 7 1 · ; 7 1 ) = ; ; ; 5 0 4 1 |
| 150 | 139 149 | eqtr4i | ⊢ ( ( 4 · 𝑁 ) + 5 ) = ( ; 7 1 · ; 7 1 ) |
| 151 | 9 10 13 14 16 5 106 115 150 | mod2xi | ⊢ ( ( 2 ↑ ; 7 6 ) mod 𝑁 ) = ( 5 mod 𝑁 ) |