Metamath Proof Explorer


Theorem 1neven

Description: 1 is not an even integer. (Contributed by AV, 12-Feb-2020)

Ref Expression
Hypothesis 2zrng.e E = z | x z = 2 x
Assertion 1neven 1 E

Proof

Step Hyp Ref Expression
1 2zrng.e E = z | x z = 2 x
2 halfnz ¬ 1 2
3 eleq1a x 1 2 = x 1 2
4 2 3 mtoi x ¬ 1 2 = x
5 1cnd x 1
6 zcn x x
7 2cnne0 2 2 0
8 7 a1i x 2 2 0
9 divmul2 1 x 2 2 0 1 2 = x 1 = 2 x
10 5 6 8 9 syl3anc x 1 2 = x 1 = 2 x
11 4 10 mtbid x ¬ 1 = 2 x
12 11 nrex ¬ x 1 = 2 x
13 12 intnan ¬ 1 x 1 = 2 x
14 eqeq1 z = 1 z = 2 x 1 = 2 x
15 14 rexbidv z = 1 x z = 2 x x 1 = 2 x
16 15 1 elrab2 1 E 1 x 1 = 2 x
17 13 16 mtbir ¬ 1 E
18 17 nelir 1 E