Metamath Proof Explorer


Theorem 2eu6

Description: Two equivalent expressions for double existential uniqueness. (Contributed by NM, 2-Feb-2005) (Revised by Mario Carneiro, 17-Oct-2016) (Proof shortened by Wolf Lammen, 2-Oct-2019)

Ref Expression
Assertion 2eu6 ∃!xyφ∃!yxφzwxyφx=zy=w

Proof

Step Hyp Ref Expression
1 2eu4 ∃!xyφ∃!yxφxyφzwxyφx=zy=w
2 nfia1 xxyφx=zy=wxyφx=zy=w
3 nfa1 yyφx=zy=w
4 nfv yx=z
5 simpl x=zy=wx=z
6 5 imim2i φx=zy=wφx=z
7 6 sps yφx=zy=wφx=z
8 3 4 7 exlimd yφx=zy=wyφx=z
9 ax12v x=zyφxx=zyφ
10 8 9 syli yφx=zy=wyφxx=zyφ
11 10 com12 yφyφx=zy=wxx=zyφ
12 11 spsd yφxyφx=zy=wxx=zyφ
13 nfs1v ywyφ
14 simpr x=zy=wy=w
15 14 imim2i φx=zy=wφy=w
16 sbequ1 y=wφwyφ
17 15 16 syli φx=zy=wφwyφ
18 17 sps yφx=zy=wφwyφ
19 3 13 18 exlimd yφx=zy=wyφwyφ
20 19 imim2d yφx=zy=wx=zyφx=zwyφ
21 20 al2imi xyφx=zy=wxx=zyφxx=zwyφ
22 sb6 zxwyφxx=zwyφ
23 2sb6 zxwyφxyx=zy=wφ
24 22 23 bitr3i xx=zwyφxyx=zy=wφ
25 21 24 imbitrdi xyφx=zy=wxx=zyφxyx=zy=wφ
26 12 25 sylcom yφxyφx=zy=wxyx=zy=wφ
27 26 ancld yφxyφx=zy=wxyφx=zy=wxyx=zy=wφ
28 2albiim xyφx=zy=wxyφx=zy=wxyx=zy=wφ
29 27 28 imbitrrdi yφxyφx=zy=wxyφx=zy=w
30 2 29 exlimi xyφxyφx=zy=wxyφx=zy=w
31 30 2eximdv xyφzwxyφx=zy=wzwxyφx=zy=w
32 31 imp xyφzwxyφx=zy=wzwxyφx=zy=w
33 biimpr φx=zy=wx=zy=wφ
34 33 2alimi xyφx=zy=wxyx=zy=wφ
35 34 2eximi zwxyφx=zy=wzwxyx=zy=wφ
36 2exsb xyφzwxyx=zy=wφ
37 35 36 sylibr zwxyφx=zy=wxyφ
38 biimp φx=zy=wφx=zy=w
39 38 2alimi xyφx=zy=wxyφx=zy=w
40 39 2eximi zwxyφx=zy=wzwxyφx=zy=w
41 37 40 jca zwxyφx=zy=wxyφzwxyφx=zy=w
42 32 41 impbii xyφzwxyφx=zy=wzwxyφx=zy=w
43 1 42 bitri ∃!xyφ∃!yxφzwxyφx=zy=w