Description: Two equivalent expressions for double existential uniqueness. (Contributed by NM, 2-Feb-2005) (Revised by Mario Carneiro, 17-Oct-2016) (Proof shortened by Wolf Lammen, 2-Oct-2019)
Ref | Expression | ||
---|---|---|---|
Assertion | 2eu6 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2eu4 | |
|
2 | nfia1 | |
|
3 | nfa1 | |
|
4 | nfv | |
|
5 | simpl | |
|
6 | 5 | imim2i | |
7 | 6 | sps | |
8 | 3 4 7 | exlimd | |
9 | ax12v | |
|
10 | 8 9 | syli | |
11 | 10 | com12 | |
12 | 11 | spsd | |
13 | nfs1v | |
|
14 | simpr | |
|
15 | 14 | imim2i | |
16 | sbequ1 | |
|
17 | 15 16 | syli | |
18 | 17 | sps | |
19 | 3 13 18 | exlimd | |
20 | 19 | imim2d | |
21 | 20 | al2imi | |
22 | sb6 | |
|
23 | 2sb6 | |
|
24 | 22 23 | bitr3i | |
25 | 21 24 | imbitrdi | |
26 | 12 25 | sylcom | |
27 | 26 | ancld | |
28 | 2albiim | |
|
29 | 27 28 | imbitrrdi | |
30 | 2 29 | exlimi | |
31 | 30 | 2eximdv | |
32 | 31 | imp | |
33 | biimpr | |
|
34 | 33 | 2alimi | |
35 | 34 | 2eximi | |
36 | 2exsb | |
|
37 | 35 36 | sylibr | |
38 | biimp | |
|
39 | 38 | 2alimi | |
40 | 39 | 2eximi | |
41 | 37 40 | jca | |
42 | 32 41 | impbii | |
43 | 1 42 | bitri | |