Metamath Proof Explorer


Theorem 2idlelbas

Description: The base set of a two-sided ideal as structure is a left and right ideal. (Contributed by AV, 20-Feb-2025)

Ref Expression
Hypotheses 2idlbas.i φI2IdealR
2idlbas.j J=R𝑠I
2idlbas.b B=BaseJ
Assertion 2idlelbas φBLIdealRBLIdealopprR

Proof

Step Hyp Ref Expression
1 2idlbas.i φI2IdealR
2 2idlbas.j J=R𝑠I
3 2idlbas.b B=BaseJ
4 1 2 3 2idlbas φB=I
5 eqid LIdealR=LIdealR
6 eqid opprR=opprR
7 eqid LIdealopprR=LIdealopprR
8 eqid 2IdealR=2IdealR
9 5 6 7 8 2idlelb I2IdealRILIdealRILIdealopprR
10 9 simplbi I2IdealRILIdealR
11 1 10 syl φILIdealR
12 4 11 eqeltrd φBLIdealR
13 9 simprbi I2IdealRILIdealopprR
14 1 13 syl φILIdealopprR
15 4 14 eqeltrd φBLIdealopprR
16 12 15 jca φBLIdealRBLIdealopprR