Metamath Proof Explorer


Theorem 2logb9irrALT

Description: Alternate proof of 2logb9irr : The logarithm of nine to base two is irrational. (Contributed by AV, 31-Dec-2022) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion 2logb9irrALT log29

Proof

Step Hyp Ref Expression
1 sq3 32=9
2 1 eqcomi 9=32
3 2 oveq2i log29=log232
4 2cn 2
5 2ne0 20
6 1ne2 12
7 6 necomi 21
8 eldifpr 20122021
9 4 5 7 8 mpbir3an 201
10 3rp 3+
11 2z 2
12 relogbzexp 2013+2log232=2log23
13 9 10 11 12 mp3an log232=2log23
14 3 13 eqtri log29=2log23
15 3cn 3
16 3ne0 30
17 eldifsn 30330
18 15 16 17 mpbir2an 30
19 logbcl 20130log23
20 9 18 19 mp2an log23
21 4 20 mulcomi 2log23=log232
22 2logb3irr log23
23 zq 22
24 11 23 ax-mp 2
25 irrmul log23220log232
26 22 24 5 25 mp3an log232
27 21 26 eqeltri 2log23
28 14 27 eqeltri log29