Metamath Proof Explorer


Theorem sqrt2cxp2logb9e3

Description: The square root of two to the power of the logarithm of nine to base two is three. ( sqrt2 ) and ( 2 logb 9 ) are irrational numbers (see sqrt2irr0 resp. 2logb9irr ), satisfying the statement in 2irrexpqALT . (Contributed by AV, 29-Dec-2022)

Ref Expression
Assertion sqrt2cxp2logb9e3 2log29=3

Proof

Step Hyp Ref Expression
1 2cn 2
2 cxpsqrt 2212=2
3 1 2 ax-mp 212=2
4 3 eqcomi 2=212
5 4 oveq1i 2log29=212log29
6 2rp 2+
7 halfre 12
8 2z 2
9 uzid 222
10 8 9 ax-mp 22
11 9nn 9
12 nnrp 99+
13 11 12 ax-mp 9+
14 relogbzcl 229+log29
15 10 13 14 mp2an log29
16 cxpcom 2+12log29212log29=2log2912
17 6 7 15 16 mp3an 212log29=2log2912
18 15 recni log29
19 cxpcl 2log292log29
20 1 18 19 mp2an 2log29
21 cxpsqrt 2log292log2912=2log29
22 20 21 ax-mp 2log2912=2log29
23 5 17 22 3eqtri 2log29=2log29
24 2ne0 20
25 1ne2 12
26 25 necomi 21
27 eldifpr 20122021
28 1 24 26 27 mpbir3an 201
29 9cn 9
30 9re 9
31 9pos 0<9
32 30 31 gt0ne0ii 90
33 eldifsn 90990
34 29 32 33 mpbir2an 90
35 cxplogb 201902log29=9
36 28 34 35 mp2an 2log29=9
37 36 fveq2i 2log29=9
38 sqrt9 9=3
39 23 37 38 3eqtri 2log29=3