| Step |
Hyp |
Ref |
Expression |
| 1 |
|
2cn |
⊢ 2 ∈ ℂ |
| 2 |
|
cxpsqrt |
⊢ ( 2 ∈ ℂ → ( 2 ↑𝑐 ( 1 / 2 ) ) = ( √ ‘ 2 ) ) |
| 3 |
1 2
|
ax-mp |
⊢ ( 2 ↑𝑐 ( 1 / 2 ) ) = ( √ ‘ 2 ) |
| 4 |
3
|
eqcomi |
⊢ ( √ ‘ 2 ) = ( 2 ↑𝑐 ( 1 / 2 ) ) |
| 5 |
4
|
oveq1i |
⊢ ( ( √ ‘ 2 ) ↑𝑐 ( 2 logb 9 ) ) = ( ( 2 ↑𝑐 ( 1 / 2 ) ) ↑𝑐 ( 2 logb 9 ) ) |
| 6 |
|
2rp |
⊢ 2 ∈ ℝ+ |
| 7 |
|
halfre |
⊢ ( 1 / 2 ) ∈ ℝ |
| 8 |
|
2z |
⊢ 2 ∈ ℤ |
| 9 |
|
uzid |
⊢ ( 2 ∈ ℤ → 2 ∈ ( ℤ≥ ‘ 2 ) ) |
| 10 |
8 9
|
ax-mp |
⊢ 2 ∈ ( ℤ≥ ‘ 2 ) |
| 11 |
|
9nn |
⊢ 9 ∈ ℕ |
| 12 |
|
nnrp |
⊢ ( 9 ∈ ℕ → 9 ∈ ℝ+ ) |
| 13 |
11 12
|
ax-mp |
⊢ 9 ∈ ℝ+ |
| 14 |
|
relogbzcl |
⊢ ( ( 2 ∈ ( ℤ≥ ‘ 2 ) ∧ 9 ∈ ℝ+ ) → ( 2 logb 9 ) ∈ ℝ ) |
| 15 |
10 13 14
|
mp2an |
⊢ ( 2 logb 9 ) ∈ ℝ |
| 16 |
|
cxpcom |
⊢ ( ( 2 ∈ ℝ+ ∧ ( 1 / 2 ) ∈ ℝ ∧ ( 2 logb 9 ) ∈ ℝ ) → ( ( 2 ↑𝑐 ( 1 / 2 ) ) ↑𝑐 ( 2 logb 9 ) ) = ( ( 2 ↑𝑐 ( 2 logb 9 ) ) ↑𝑐 ( 1 / 2 ) ) ) |
| 17 |
6 7 15 16
|
mp3an |
⊢ ( ( 2 ↑𝑐 ( 1 / 2 ) ) ↑𝑐 ( 2 logb 9 ) ) = ( ( 2 ↑𝑐 ( 2 logb 9 ) ) ↑𝑐 ( 1 / 2 ) ) |
| 18 |
15
|
recni |
⊢ ( 2 logb 9 ) ∈ ℂ |
| 19 |
|
cxpcl |
⊢ ( ( 2 ∈ ℂ ∧ ( 2 logb 9 ) ∈ ℂ ) → ( 2 ↑𝑐 ( 2 logb 9 ) ) ∈ ℂ ) |
| 20 |
1 18 19
|
mp2an |
⊢ ( 2 ↑𝑐 ( 2 logb 9 ) ) ∈ ℂ |
| 21 |
|
cxpsqrt |
⊢ ( ( 2 ↑𝑐 ( 2 logb 9 ) ) ∈ ℂ → ( ( 2 ↑𝑐 ( 2 logb 9 ) ) ↑𝑐 ( 1 / 2 ) ) = ( √ ‘ ( 2 ↑𝑐 ( 2 logb 9 ) ) ) ) |
| 22 |
20 21
|
ax-mp |
⊢ ( ( 2 ↑𝑐 ( 2 logb 9 ) ) ↑𝑐 ( 1 / 2 ) ) = ( √ ‘ ( 2 ↑𝑐 ( 2 logb 9 ) ) ) |
| 23 |
5 17 22
|
3eqtri |
⊢ ( ( √ ‘ 2 ) ↑𝑐 ( 2 logb 9 ) ) = ( √ ‘ ( 2 ↑𝑐 ( 2 logb 9 ) ) ) |
| 24 |
|
2ne0 |
⊢ 2 ≠ 0 |
| 25 |
|
1ne2 |
⊢ 1 ≠ 2 |
| 26 |
25
|
necomi |
⊢ 2 ≠ 1 |
| 27 |
|
eldifpr |
⊢ ( 2 ∈ ( ℂ ∖ { 0 , 1 } ) ↔ ( 2 ∈ ℂ ∧ 2 ≠ 0 ∧ 2 ≠ 1 ) ) |
| 28 |
1 24 26 27
|
mpbir3an |
⊢ 2 ∈ ( ℂ ∖ { 0 , 1 } ) |
| 29 |
|
9cn |
⊢ 9 ∈ ℂ |
| 30 |
|
9re |
⊢ 9 ∈ ℝ |
| 31 |
|
9pos |
⊢ 0 < 9 |
| 32 |
30 31
|
gt0ne0ii |
⊢ 9 ≠ 0 |
| 33 |
|
eldifsn |
⊢ ( 9 ∈ ( ℂ ∖ { 0 } ) ↔ ( 9 ∈ ℂ ∧ 9 ≠ 0 ) ) |
| 34 |
29 32 33
|
mpbir2an |
⊢ 9 ∈ ( ℂ ∖ { 0 } ) |
| 35 |
|
cxplogb |
⊢ ( ( 2 ∈ ( ℂ ∖ { 0 , 1 } ) ∧ 9 ∈ ( ℂ ∖ { 0 } ) ) → ( 2 ↑𝑐 ( 2 logb 9 ) ) = 9 ) |
| 36 |
28 34 35
|
mp2an |
⊢ ( 2 ↑𝑐 ( 2 logb 9 ) ) = 9 |
| 37 |
36
|
fveq2i |
⊢ ( √ ‘ ( 2 ↑𝑐 ( 2 logb 9 ) ) ) = ( √ ‘ 9 ) |
| 38 |
|
sqrt9 |
⊢ ( √ ‘ 9 ) = 3 |
| 39 |
23 37 38
|
3eqtri |
⊢ ( ( √ ‘ 2 ) ↑𝑐 ( 2 logb 9 ) ) = 3 |