Metamath Proof Explorer


Theorem 2pthfrgr

Description: Between any two (different) vertices in a friendship graph, tere is a 2-path (simple path of length 2), see Proposition 1(b) of MertziosUnger p. 153 : "A friendship graph G ..., as well as the distance between any two nodes in G is at most two". (Contributed by Alexander van der Vekens, 6-Dec-2017) (Revised by AV, 1-Apr-2021)

Ref Expression
Hypothesis 2pthfrgr.v V=VtxG
Assertion 2pthfrgr GFriendGraphaVbVafpfaSPathsOnGbpf=2

Proof

Step Hyp Ref Expression
1 2pthfrgr.v V=VtxG
2 eqid EdgG=EdgG
3 1 2 2pthfrgrrn2 GFriendGraphaVbVamVamEdgGmbEdgGammb
4 frgrusgr GFriendGraphGUSGraph
5 usgruhgr GUSGraphGUHGraph
6 4 5 syl GFriendGraphGUHGraph
7 6 adantr GFriendGraphaVGUHGraph
8 7 adantr GFriendGraphaVbVaGUHGraph
9 8 adantr GFriendGraphaVbVamVGUHGraph
10 simpllr GFriendGraphaVbVamVaV
11 simpr GFriendGraphaVbVamVmV
12 eldifi bVabV
13 12 ad2antlr GFriendGraphaVbVamVbV
14 10 11 13 3jca GFriendGraphaVbVamVaVmVbV
15 9 14 jca GFriendGraphaVbVamVGUHGraphaVmVbV
16 15 adantr GFriendGraphaVbVamVamEdgGmbEdgGammbGUHGraphaVmVbV
17 simprrl GFriendGraphaVbVamVamEdgGmbEdgGammbam
18 eldifsn bVabVba
19 necom baab
20 19 biimpi baab
21 18 20 simplbiim bVaab
22 21 ad3antlr GFriendGraphaVbVamVamEdgGmbEdgGammbab
23 simprrr GFriendGraphaVbVamVamEdgGmbEdgGammbmb
24 simprl GFriendGraphaVbVamVamEdgGmbEdgGammbamEdgGmbEdgG
25 1 2 2pthon3v GUHGraphaVmVbVamabmbamEdgGmbEdgGfpfaSPathsOnGbpf=2
26 16 17 22 23 24 25 syl131anc GFriendGraphaVbVamVamEdgGmbEdgGammbfpfaSPathsOnGbpf=2
27 26 rexlimdva2 GFriendGraphaVbVamVamEdgGmbEdgGammbfpfaSPathsOnGbpf=2
28 27 ralimdva GFriendGraphaVbVamVamEdgGmbEdgGammbbVafpfaSPathsOnGbpf=2
29 28 ralimdva GFriendGraphaVbVamVamEdgGmbEdgGammbaVbVafpfaSPathsOnGbpf=2
30 3 29 mpd GFriendGraphaVbVafpfaSPathsOnGbpf=2