Description: Between any two (different) vertices in a friendship graph, tere is a 2-path (simple path of length 2), see Proposition 1(b) of MertziosUnger p. 153 : "A friendship graph G ..., as well as the distance between any two nodes in G is at most two". (Contributed by Alexander van der Vekens, 6-Dec-2017) (Revised by AV, 1-Apr-2021)
Ref | Expression | ||
---|---|---|---|
Hypothesis | 2pthfrgr.v | |
|
Assertion | 2pthfrgr | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2pthfrgr.v | |
|
2 | eqid | |
|
3 | 1 2 | 2pthfrgrrn2 | |
4 | frgrusgr | |
|
5 | usgruhgr | |
|
6 | 4 5 | syl | |
7 | 6 | adantr | |
8 | 7 | adantr | |
9 | 8 | adantr | |
10 | simpllr | |
|
11 | simpr | |
|
12 | eldifi | |
|
13 | 12 | ad2antlr | |
14 | 10 11 13 | 3jca | |
15 | 9 14 | jca | |
16 | 15 | adantr | |
17 | simprrl | |
|
18 | eldifsn | |
|
19 | necom | |
|
20 | 19 | biimpi | |
21 | 18 20 | simplbiim | |
22 | 21 | ad3antlr | |
23 | simprrr | |
|
24 | simprl | |
|
25 | 1 2 | 2pthon3v | |
26 | 16 17 22 23 24 25 | syl131anc | |
27 | 26 | rexlimdva2 | |
28 | 27 | ralimdva | |
29 | 28 | ralimdva | |
30 | 3 29 | mpd | |