| Step |
Hyp |
Ref |
Expression |
| 1 |
|
2pthfrgr.v |
|
| 2 |
|
eqid |
|
| 3 |
1 2
|
2pthfrgrrn2 |
|
| 4 |
|
frgrusgr |
|
| 5 |
|
usgruhgr |
|
| 6 |
4 5
|
syl |
|
| 7 |
6
|
adantr |
|
| 8 |
7
|
adantr |
|
| 9 |
8
|
adantr |
|
| 10 |
|
simpllr |
|
| 11 |
|
simpr |
|
| 12 |
|
eldifi |
|
| 13 |
12
|
ad2antlr |
|
| 14 |
10 11 13
|
3jca |
|
| 15 |
9 14
|
jca |
|
| 16 |
15
|
adantr |
|
| 17 |
|
simprrl |
|
| 18 |
|
eldifsn |
|
| 19 |
|
necom |
|
| 20 |
19
|
biimpi |
|
| 21 |
18 20
|
simplbiim |
|
| 22 |
21
|
ad3antlr |
|
| 23 |
|
simprrr |
|
| 24 |
|
simprl |
|
| 25 |
1 2
|
2pthon3v |
|
| 26 |
16 17 22 23 24 25
|
syl131anc |
|
| 27 |
26
|
rexlimdva2 |
|
| 28 |
27
|
ralimdva |
|
| 29 |
28
|
ralimdva |
|
| 30 |
3 29
|
mpd |
|