| Step |
Hyp |
Ref |
Expression |
| 1 |
|
2pthnloop.i |
|
| 2 |
|
pthiswlk |
|
| 3 |
|
wlkv |
|
| 4 |
2 3
|
syl |
|
| 5 |
|
ispth |
|
| 6 |
|
istrl |
|
| 7 |
|
eqid |
|
| 8 |
7 1
|
iswlkg |
|
| 9 |
8
|
anbi1d |
|
| 10 |
6 9
|
bitrid |
|
| 11 |
|
pthdadjvtx |
|
| 12 |
11
|
ad5ant245 |
|
| 13 |
12
|
neneqd |
|
| 14 |
|
ifpfal |
|
| 15 |
14
|
adantl |
|
| 16 |
|
fvexd |
|
| 17 |
|
fvexd |
|
| 18 |
|
neqne |
|
| 19 |
|
fvexd |
|
| 20 |
|
prsshashgt1 |
|
| 21 |
16 17 18 19 20
|
syl31anc |
|
| 22 |
21
|
adantl |
|
| 23 |
15 22
|
sylbid |
|
| 24 |
13 23
|
mpdan |
|
| 25 |
24
|
ralimdva |
|
| 26 |
25
|
ex |
|
| 27 |
26
|
com23 |
|
| 28 |
27
|
exp31 |
|
| 29 |
28
|
com24 |
|
| 30 |
29
|
3impia |
|
| 31 |
30
|
exp4c |
|
| 32 |
31
|
imp |
|
| 33 |
10 32
|
biimtrdi |
|
| 34 |
33
|
com24 |
|
| 35 |
34
|
com14 |
|
| 36 |
35
|
3imp |
|
| 37 |
36
|
com12 |
|
| 38 |
5 37
|
biimtrid |
|
| 39 |
38
|
3ad2ant1 |
|
| 40 |
4 39
|
mpcom |
|
| 41 |
40
|
pm2.43i |
|
| 42 |
41
|
imp |
|