Metamath Proof Explorer


Theorem 2pthnloop

Description: A path of length at least 2 does not contain a loop. In contrast, a path of length 1 can contain/be a loop, see lppthon . (Contributed by AV, 6-Feb-2021)

Ref Expression
Hypothesis 2pthnloop.i I = iEdg G
Assertion 2pthnloop F Paths G P 1 < F i 0 ..^ F 2 I F i

Proof

Step Hyp Ref Expression
1 2pthnloop.i I = iEdg G
2 pthiswlk F Paths G P F Walks G P
3 wlkv F Walks G P G V F V P V
4 2 3 syl F Paths G P G V F V P V
5 ispth F Paths G P F Trails G P Fun P 1 ..^ F -1 P 0 F P 1 ..^ F =
6 istrl F Trails G P F Walks G P Fun F -1
7 eqid Vtx G = Vtx G
8 7 1 iswlkg G V F Walks G P F Word dom I P : 0 F Vtx G i 0 ..^ F if- P i = P i + 1 I F i = P i P i P i + 1 I F i
9 8 anbi1d G V F Walks G P Fun F -1 F Word dom I P : 0 F Vtx G i 0 ..^ F if- P i = P i + 1 I F i = P i P i P i + 1 I F i Fun F -1
10 6 9 syl5bb G V F Trails G P F Word dom I P : 0 F Vtx G i 0 ..^ F if- P i = P i + 1 I F i = P i P i P i + 1 I F i Fun F -1
11 pthdadjvtx F Paths G P 1 < F i 0 ..^ F P i P i + 1
12 11 ad5ant245 F Word dom I P : 0 F Vtx G F Paths G P Fun F -1 P 0 F P 1 ..^ F = Fun P 1 ..^ F -1 1 < F i 0 ..^ F P i P i + 1
13 12 neneqd F Word dom I P : 0 F Vtx G F Paths G P Fun F -1 P 0 F P 1 ..^ F = Fun P 1 ..^ F -1 1 < F i 0 ..^ F ¬ P i = P i + 1
14 ifpfal ¬ P i = P i + 1 if- P i = P i + 1 I F i = P i P i P i + 1 I F i P i P i + 1 I F i
15 14 adantl F Word dom I P : 0 F Vtx G F Paths G P Fun F -1 P 0 F P 1 ..^ F = Fun P 1 ..^ F -1 1 < F i 0 ..^ F ¬ P i = P i + 1 if- P i = P i + 1 I F i = P i P i P i + 1 I F i P i P i + 1 I F i
16 fvexd ¬ P i = P i + 1 P i V
17 fvexd ¬ P i = P i + 1 P i + 1 V
18 neqne ¬ P i = P i + 1 P i P i + 1
19 fvexd ¬ P i = P i + 1 I F i V
20 prsshashgt1 P i V P i + 1 V P i P i + 1 I F i V P i P i + 1 I F i 2 I F i
21 16 17 18 19 20 syl31anc ¬ P i = P i + 1 P i P i + 1 I F i 2 I F i
22 21 adantl F Word dom I P : 0 F Vtx G F Paths G P Fun F -1 P 0 F P 1 ..^ F = Fun P 1 ..^ F -1 1 < F i 0 ..^ F ¬ P i = P i + 1 P i P i + 1 I F i 2 I F i
23 15 22 sylbid F Word dom I P : 0 F Vtx G F Paths G P Fun F -1 P 0 F P 1 ..^ F = Fun P 1 ..^ F -1 1 < F i 0 ..^ F ¬ P i = P i + 1 if- P i = P i + 1 I F i = P i P i P i + 1 I F i 2 I F i
24 13 23 mpdan F Word dom I P : 0 F Vtx G F Paths G P Fun F -1 P 0 F P 1 ..^ F = Fun P 1 ..^ F -1 1 < F i 0 ..^ F if- P i = P i + 1 I F i = P i P i P i + 1 I F i 2 I F i
25 24 ralimdva F Word dom I P : 0 F Vtx G F Paths G P Fun F -1 P 0 F P 1 ..^ F = Fun P 1 ..^ F -1 1 < F i 0 ..^ F if- P i = P i + 1 I F i = P i P i P i + 1 I F i i 0 ..^ F 2 I F i
26 25 ex F Word dom I P : 0 F Vtx G F Paths G P Fun F -1 P 0 F P 1 ..^ F = Fun P 1 ..^ F -1 1 < F i 0 ..^ F if- P i = P i + 1 I F i = P i P i P i + 1 I F i i 0 ..^ F 2 I F i
27 26 com23 F Word dom I P : 0 F Vtx G F Paths G P Fun F -1 P 0 F P 1 ..^ F = Fun P 1 ..^ F -1 i 0 ..^ F if- P i = P i + 1 I F i = P i P i P i + 1 I F i 1 < F i 0 ..^ F 2 I F i
28 27 exp31 F Word dom I P : 0 F Vtx G F Paths G P Fun F -1 P 0 F P 1 ..^ F = Fun P 1 ..^ F -1 i 0 ..^ F if- P i = P i + 1 I F i = P i P i P i + 1 I F i 1 < F i 0 ..^ F 2 I F i
29 28 com24 F Word dom I P : 0 F Vtx G i 0 ..^ F if- P i = P i + 1 I F i = P i P i P i + 1 I F i Fun F -1 P 0 F P 1 ..^ F = Fun P 1 ..^ F -1 F Paths G P 1 < F i 0 ..^ F 2 I F i
30 29 3impia F Word dom I P : 0 F Vtx G i 0 ..^ F if- P i = P i + 1 I F i = P i P i P i + 1 I F i Fun F -1 P 0 F P 1 ..^ F = Fun P 1 ..^ F -1 F Paths G P 1 < F i 0 ..^ F 2 I F i
31 30 exp4c F Word dom I P : 0 F Vtx G i 0 ..^ F if- P i = P i + 1 I F i = P i P i P i + 1 I F i Fun F -1 P 0 F P 1 ..^ F = Fun P 1 ..^ F -1 F Paths G P 1 < F i 0 ..^ F 2 I F i
32 31 imp F Word dom I P : 0 F Vtx G i 0 ..^ F if- P i = P i + 1 I F i = P i P i P i + 1 I F i Fun F -1 P 0 F P 1 ..^ F = Fun P 1 ..^ F -1 F Paths G P 1 < F i 0 ..^ F 2 I F i
33 10 32 syl6bi G V F Trails G P P 0 F P 1 ..^ F = Fun P 1 ..^ F -1 F Paths G P 1 < F i 0 ..^ F 2 I F i
34 33 com24 G V Fun P 1 ..^ F -1 P 0 F P 1 ..^ F = F Trails G P F Paths G P 1 < F i 0 ..^ F 2 I F i
35 34 com14 F Trails G P Fun P 1 ..^ F -1 P 0 F P 1 ..^ F = G V F Paths G P 1 < F i 0 ..^ F 2 I F i
36 35 3imp F Trails G P Fun P 1 ..^ F -1 P 0 F P 1 ..^ F = G V F Paths G P 1 < F i 0 ..^ F 2 I F i
37 36 com12 G V F Trails G P Fun P 1 ..^ F -1 P 0 F P 1 ..^ F = F Paths G P 1 < F i 0 ..^ F 2 I F i
38 5 37 syl5bi G V F Paths G P F Paths G P 1 < F i 0 ..^ F 2 I F i
39 38 3ad2ant1 G V F V P V F Paths G P F Paths G P 1 < F i 0 ..^ F 2 I F i
40 4 39 mpcom F Paths G P F Paths G P 1 < F i 0 ..^ F 2 I F i
41 40 pm2.43i F Paths G P 1 < F i 0 ..^ F 2 I F i
42 41 imp F Paths G P 1 < F i 0 ..^ F 2 I F i